Интерференции в тонких пленках: явление и условия для его возникновения. Интерференция света в тонких плёнках. Полосы равного наклона и равной толщины. Кольца ньютона. Практическое применение интерференции Как объясняется интерференция света в тонких плен

Сегодня мы расскажем об интерференции в тонких пленках. В фокусе нашего внимания открытие, исследование и применения этого замечательного физического явления.

Определение

Прежде чем описывать какой-то закон, сначала надо понять, что за составляющие в него входят. Если этого не сделать, то читатель может пропустить важные детали, и восприятие научного факта исказится. Школьник, который пропустил одно занятие по физике из-за болезни или лени, должен обязательно разобрать эту тему самостоятельно. Потому что каждое следующее понятие опирается на предыдущее. Если упустить одно значение, непонятной будет вся остальная физика. Прежде чем приступать к выводу интерференции в тонких пленках, надо сначала дать определение явлению.

Этот феномен может относиться к любым колебательным процессам. Интерферировать могут волны ветра, моря и звука. Взаимодействие происходит даже у таких сложных квазичастиц, как коллективное колебание решетки кристаллов.

Интерференция - это явление, которое происходит при встрече в одном месте нескольких волн. Оно состоит в том, что при сложении изменяется амплитуда результирующего колебания. Это значит, что волны могут усилить, погасить друг друга или пройти дальше без изменений.

Свет

Явление интерференции в тонких пленках - это взаимодействие волн света. Так что прежде чем приступать к описанию феномена, надо пояснить природу этих колебаний.

Свет - это квант электромагнитного поля. Фотон обладает свойствами как волны, так и частицы. Пока квант движется сквозь пространство, он нерушим и вечен. Доказательством тому свет далеких галактик. Некоторые из них, возможно, уже поменяли форму или вообще перестали существовать. Но их излучение летело сквозь космос миллиарды лет, пока не достигло взгляда людей.

Основной источник света - электронные переходы в атоме. Внутри звезд происходит мощная термоядерная реакция, в результате которой выделяются все виды электромагнитного излучения. Видимый свет - только небольшой участок всей шкалы, который доступен человеческому зрению.

Свойства волны

Чтобы описать кратко интерференцию в тонких пленках, надо рассказать о волновых свойствах света. Для понимания формы идеального колебания без затухания надо только посмотреть на график синуса или косинуса в привычных декартовых координатах. Основные свойства фотона следующие:

  1. Длина волны. Обозначается греческой буквой λ. Длина волны - это расстояние между двумя одинаковыми фазами. Нагляднее всего эта величина демонстрируется как промежуток между двумя соседними максимумами или минимумами.
  2. Частота. В зависимости от вида обозначается по-разному: линейная частота - это ν, циклическая - ω, а если эта величина выражается как функция, то она пишется латинской буквой f , причем непременно курсивом. Частота и длина волны связаны соотношением λ * ν = c, где c - это скорость света в вакууме. Таким образом, зная одну величину, другую получить очень просто.
  3. Амплитуда. Для интерференции данное свойство волны самое важное. Это высота максимумов и минимумов колебания. Именно амплитуда изменяется, когда встречаются две волны.
  4. Фаза. Для единичного кванта этот фактор значения не имеет. При взаимодействии важна разница фаз. Состояние (максимум, минимум или стремление к ним), в котором пришли в одно место две волны, влияет на конечную интенсивность при интерференции.
  5. Поляризация. В целом это свойство описывает форму колебания. Поляризация света бывает линейной, круговой и эллиптической.

Преломление, отражение

Непосредственно явление интерференции света в тонких пленках связано еще с несколькими феноменами линейной оптики.

Встречая препятствие, свет может действовать по-разному:

  • отразиться;
  • преломиться;
  • рассеяться;
  • поглотиться.

В последнем случае фотон отдает свою энергию веществу, и там происходят какие-то изменения. Чаще всего это просто нагрев. Недаром вещь, оставленная на солнцепеке, становится очень горячей. Много разных квантов передают забытому детьми мячу свою энергию.

Рассеяние тоже подразумевает, что свет взаимодействует с материей: он поглощается и вновь излучается обратно. Часто выходящие кванты имеют другую длину волны или поляризацию.

Преломление и отражение не изменяют свойства пучка, разница лишь в направлении распространения света.

Все эти процессы участвуют, например, в формировании изображения поверхности озера.

Поведение света в тонких покрытиях

Простейшим примером пленочного покрытия является мыльная пена. Мыло увеличивает поверхностное натяжение воды. В итоге она образует очень большие площади при маленькой толщине. Мыльные пузыри переливаются всеми цветами радуги. И сейчас мы объясним, почему.

На пленку падает свет. На верхней границе покрытия часть его отражается, часть преломляется. Нас интересует второй пучок, который оказался внутри вещества. Он достигает дна, и дальше тоже часть преломляется, а часть отражается обратно внутрь пленки. Тот свет, который идет в следующую среду, для наблюдателя потерян. А вот тот, который возвращается обратно в пленку, нам как раз интересен, потому что на границе он опять преломляется и выходит в первую среду, из которой он первоначально вошел. Получается, что входящий и выходящий пучки параллельны друг другу. Это один и тот же свет, только фаза его на выходе изменилась. Разница определит, что увидит наблюдатель: светлую полосу или темную. Описанный процесс составляет сущность интерференции в тонких пленках. Кольца Ньютона, которые наблюдаются в параллельном пучке света между выпуклой линзой и плоской стеклянной пластиной, фактически имеют ту же природу. Их очень просто наблюдать: этот опыт способны произвести даже школьники на уроках физики.

Расстояние между светлыми полосами

Надеемся, читатель вполне уяснил себе механизм взаимодействия света и тонких покрытий. Теперь приведем некоторые формулы.

На выходе из пленки наблюдается картина светлых и темных областей. Площади, на которых конечная картина имеет одну и ту же освещенность, называется полосами равного наклона. Интерференция в тонких пленках дает нам следующую формулу для их расчета:

2m * λ = (2nh * cosβ ± λ) / 2.

Здесь: λ - длина волны падающего излучения, m - порядок интерференции, β - угол между преломленным в первый раз пучком и нормалью к поверхности, n - показатель преломления пленки, а h - ее толщина.

Следует отметить, что данное условие покажет геометрическое место точек наиболее светлых областей

Таким образом расположены только те пучки, которые падают на поверхность пленки под одним и тем же углом. Именно поэтому они называются полосами равного наклона.

Фотоаппараты и очки

Школьник, который находит физику скучным предметом, наверняка задает себе вопрос: «Зачем все это нужно?». Тем не менее взаимодействие света и тонких покрытий используется в повседневной жизни достаточно широко.

На линзах любой фото- и телеаппаратуры есть напыление: тончайшая прозрачная пленка. Ее толщина подобрана так, чтобы камера не давала зеленых бликов (свет этой длины волны гасит сам себя, проходя через слой на поверхности стекла). Такое решение делает изображение контрастным и ярким. Ведь человек лучше всего видит зеленый спектр и недостатки этого цвета воспринимает наиболее четко.

Просветляющее напыление наносится также на линзы микроскопов и телескопов. И не обязательно толщина пленки соответствует зеленому цвету. Если ученый исследует процессы с инфракрасным или ультрафиолетовым излучением, аппаратура помогает ему именно в этом диапазоне.

Лазеры

Также интерференция применяется в лазерах, но этот факт известен немногим.

Сегодня без лазеров не обходится ни один из видов человеческой деятельности. Устройство состоит из трех частей - накачки, рабочего тела и отражателя. Зеркало расположено на торцах основного излучающего материала. Его предназначение - собирать генерируемые фотоны конкретной длины волны в одном направлении. Этот элемент прибора часто представляет собой ряд тонких пленок, интерференция на которых позволяет проходить дальше только нужному излучению.

Радужная окраска мыльных пузырей или бензиновых пленок на воде возникает в результате интерференции солнечного света, отраженного двумя поверхностями пленки.

Пусть на плоскопараллельную прозрачную пленку с показателем преломления п и толщиной d под углом падает плоская монохроматическая волна с длиной (рис. 4.8).

Рис. 4.8. Интерференция света в тонкой пленке

Интерференционная картина в отраженном свете возникает из-за наложения двух волн, отраженных от верхней и нижней поверхностей пленки. Рассмотрим сложение волн, выходящих из точки С . Плоскую волну можно представить как пучок параллельных лучей. Один из лучей пучка (2) непосредственно попадает в точку С и отражается (2")в ней наверх под углом, равным углу падения . Другой луч (1) попадает в точку С более сложным путем: сначала он преломляется в точке А и распространяется в пленке, затем отражается от нижней ее поверхности в точке 0 и, наконец, выходит, Преломившись, наружу (1") в точке С под углом, равным углу падения . Таким образом, в точке С пленка отбрасывает вверх два параллельных луча, из которых один образовался за счет отражения от нижней поверхности пленки, второй - вследствие отражения от верхней поверхности пленки. (Пучки, возникающие в результате многократного отражения от поверхностей пленки, не рассматриваются ввиду их малой интенсивности.)

Оптическая разность хода, приобретаемая лучами 1 и 2 до того, как они сойдутся в точке С , равна

Полагая показатель преломления воздуха и учитывая соотношения

Используем закон преломления света

Таким образом,

Кроме оптической разности хода , следует учесть изменение фазы волны при отражении. В точке С на границе раздела «воздух пленка» происходит отражение от оптически более плотной среды , то есть среды с большим показателем преломления. При не слишком больших углах падения в этом случае фаза претерпевает изменение на . (Такой же скачок фазы происходит при отражении волны, бегущей вдоль струны, от ее закрепленного конца.) В точке 0 на границе раздела «пленка - воздух» свет отражается от оптически менее плотной среды, так что скачка фазы не происходит.

В итоге между лучами 1" и 2" возникает дополнительная разность фаз , которую можно учесть, если величину уменьшить или увеличить на половину длины волны в вакууме.

Следовательно, при выполнении соотношения

получается максимум интерференции в отраженном свете, а в случае

в отраженном свете наблюдается минимум .

Таким образом, при падении света на бензиновую пленку на воде в зависимости от угла зрения и толщины пленки наблюдается радужная окраска пленки, свидетельствующая об усилении световых волн с определенными длинами l. Интерференция в тонких пленках может наблюдаться не только в отраженном, но и в проходящем свете.

Как уже отмечалось, для возникновения наблюдаемой интерференционной картины оптическая разность хода интерферирующих волн не должна превышать длины когерентности , что накладывает ограничение на толщину пленки.

Пример. На мыльную пленку (п = 1.3 ), находящуюся в воздухе, падает по нормали пучок белого света. Определим, при какой наименьшей толщине d пленки отраженный свет с длиной волны мкм окажется максимально усиленным в результате интерференции.

Из условия интерференционного максимума (4.28) находим для толщины пленки выражение

(угол падения ). Минимальное значение d получается при :

Полосы равного наклона. Интерференционные полосы называются полосами равного наклона, если они возникают при падении света на плоскопараллельную пластинку (пленку) под фиксированным углом в результате интерференции лучей, отраженных от обеих поверхностей пластинки (пленки) и выходящих параллельно друг другу.

Полосы равного наклона локализованы в бесконечности, поэтому для наблюдения интерференционной картины экран помещают в фокальной плоскости собирающей линзы (как для получения изображения бесконечно удаленных предметов) (рис. 22.3).

Рис. 22.3.

Радиальная симметрия линзы приводит к тому, что интерференционная картина на экране будет иметь вид концентрических колец с центром в фокусе линзы.

Пусть из воздуха (я, ~ 1) на плоскопараллельную прозрачную пластинку с показателем преломления я 2 и толщиной d под углом О падает плоская монохроматическая световая волна с длиной волны X (рис. 22.3).

В точке А световой луч SA частично отражается и частично преломляется.

Отраженный луч 1 и отраженный в точке В луч 2 когерентны и параллельны. Если собирающей линзой их свести в точку Р, то они будут интерферировать в отраженном свете.

Будем учитывать особенность отражения электромагнитных волн и, в частности, световых волн при падении их из среды с меньшей диэлектрической проницаемостью (и меньшим показателем преломления) на границу раздела двух сред: при отражении волны от оптически более плотной среды (п 2 > я,) ее фаза изменяется на л, что равносильно так называемой «потере полуволны» (±А/2) при отражении, т.е. оптическая разность хода А изменяется на Х/2 .

Поэтому оптическая разность хода интерферирующих лучей определяется как

Используя закон преломления (sin 0 = « 2 sind"), а также то, что я, = 1, АВ- ВС = d / cos O" и AD - АС sin fs-2d tgO" sin О, можно получить

Следовательно, оптическая разность хода волн А определяется углом О, однозначно связанным с положением точки Р в фокальной плоскости линзы.

Согласно формулам (22.6) и (22.7) положение светлых и темных полос определяется следующими условиями:

Таким образом, для данных X, d и п 2 каждому наклону 0 лучей относительно пластинки соответствует своя интерференционная полоса.

Полосы равной толщины. Пусть на прозрачную тонкую пластинку (пленку) переменной толщины - клин с малым углом а между боковыми гранями - падает плоская монохроматическая световая волна в направлении параллельных лучей 1 и 2 (рис. 22.4). Интенсивность интерференционной картины, формируемой когерентными лучами, отраженными от верхней

от толщины клина в данной точке (d и d" для лучей 1 и 2 соответственно).

Рис. 22.4. Наблюдение полос равной и нижней поверхностей клина, зависит

Когерентные пары лучей и Г , 2 и 2") пересекаются вблизи поверхности клина (соответственно точки О и О") и собираются линзой на экране (соответственно в точках Р и Р").

Таким образом, на экране возникает система интерференционных полос - полос равной толщины, каждая из которых возникает при отражении от участков клина с одинаковой толщиной. Полосы равной толщины локализованы вблизи поверхности клина (в плоскости 00", отмеченной пунктиром).

Когда световые пучки от протяженного источника света падают на прозрачный клин почти нормально, то оптическая разность хода

и зависит только от толщины клина d в точке падения лучей. Это объясняет тот факт, что интерференционные полосы на поверхности клина имеют одинаковую освещенность на всех точках поверхности, где толщина клина одинакова.

Если т - число светлых (или темных) интерференционных полос, приходящихся на отрезок клина длиной /, то угол при вершине клина (sinа ~ а), выраженный в радианах, рассчитывается как

где d ] и d 2 - толщины клина, на которых располагаются соответственно к -я и (к + т )-я интерференционные полосы; Ах - расстояние между этими полосами.

Кольца Ньютона. Кольца Ньютона - классический пример кольцевых полос равной толщины , которые наблюдаются при отражении монохроматического света с длиной волны X от воздушного зазора, образованного плоскопараллельной пластинкой и соприкасающейся с ней плосковыпуклой линзой с большим радиусом кривизны.

Рис. 22.5.

Параллельный пучок света падает нормально на плоскую поверхность линзы (рис. 22.5). Полосы равной толщины имеют вид концентрических окружностей с центром соприкосновения линзы с пластинкой.

Получим условие образования темных колец. Они возникают там, где оптическая разность хода Д волн, отраженных от обеих поверхностей зазора, равна нечетному числу полуволн:

где Х/2 связано с «потерей» полуволны при отражении от пластинки.

Используем оба последних уравнения. Следовательно, в отраженном свете радиусы темных колец

Значению т = 0 соответствует минимум темного пятна в центре картины.

Аналогично получим, что радиусы светлых колец определяются как

Данные формулы для радиусов колец справедливы только в случае идеального (точечного) контакта сферической поверхности линзы с пластинкой.

Интерференцию можно наблюдать и в проходящем свете, причем в проходящем свете максимумы интерференции соответствуют минимумам интерференции в отраженном свете и наоборот.

Просветление оптики. Объективы оптических приборов содержат большое количество линз. Даже незначительное отражение света каждой

Рис. 22.6.

из поверхностей линз (около 4% падающего света) приводит к тому, что интенсивность прошедшего пучка света значительно уменьшается. Кроме того, в объективах возникают блики и фон рассеянного света, что снижает эффективность оптических систем. В призменном бинокле, например, суммарная потеря светового потока достигает -50%, но на границах сред можно создать такие условия, когда интенсивность света, прошедшего через оптическую систему, будет максимальна. Например, на поверхность линз наносят тонкие пленки прозрачного диэлектрика толщиной d с показателем преломления п ъ (рис. 22.6). При d - NX/4 (N - нечетное число) интерференция лучей Г и 2, отраженных от верхней и нижней поверхностей пленки, даст минимум интенсивности отраженного света.

Обычно просветление оптики выполняют для средней (желто-зеленой) области видимого спектра. Как следствие, в отраженном свете объективы кажутся пурпурными из-за смешения красного и фиолетового цвета. Современные технологии синтеза оксидных пленок (например, золь-гель-методом) позволяют создавать на основе элементов структуры металл - оксид - полупроводник новые просветляющие защитные покрытия в оптоэлектронике.

При падении световой волны на тонкую прозрачную пленку или пластину имеет место отражение от обеих поверхностей пленки.

В результате возникают когерентные световые волны, которые обусловливают интерференцию света.

Пусть на прозрачную плоскопараллельную пленку с показателем преломления n и толщиной d под углом и падает плоская монохроматическая волна. Падающая волна частично отражается от верхней поверхности пленки (луч 1). Преломленная волна, частично отразившись от нижней поверхности пленки, на верхней поверхности вновь частично отражается, а преломленная волна (луч 2) накладывается на первую отраженную волну (луч 1). Параллельные лучи 1 и 2 когерентны между собой, они дают локализованную на бесконечности интерференционную картину, которая определяется оптической разностью хода. Оптическая разность хода для проходного света отличается от оптической разности хода для отраженного света на, так проходящий свет не отражается от оптически густой среды. Таким образом, максимумам интерференции в отраженном свете соответствуют минимумы интерференции в проходящем свете, и наоборот.

Интерференция монохроматического света на плоскопараллельной пластинке определяется величинами?0, d, n, и и. Разным углам падения и отвечают разные точки интерференционной картины (полосы). Интерференционные полосы, возникающие в результате наложения волн, падающих на плоскопараллельную пластину под одинаковыми углами, называют полосами одинакового наклона. Параллельные лучи 1 и 2 сходятся в бесконечности, поэтому говорят, что полосы одинакового наклона локализованы на бесконечности. Для их наблюдения используют собирательную линзу и экран, расположенный в фокальной плоскости линзы.

6.4.2. Рассмотрим интерференцию света на клинообразной пленке переменной толщины. Пусть на клин с углом? между боковыми гранями падает плоская волна (лучи 1, 2 на рис. 6.10). Очевидно, что отраженные лучи 1 ? и 1 ? ? от верхней и нижней поверхностей клина (так же как 2 ? и 2 ? ?) когерентные между собой. Они могут интерферировать. Если угол? мал, то оптическая разность хода лучей 1 ? и 1.

где dm - средняя толщина клина на участке АС. Из рис. 6.10 видно, что интерференционная картина локализована у поверхности клина. Система интерференционных полос возникает за счет отражения от мест пленки имеют одинаковую толщину. Эти полосы называются полосами одинаковой толщины. Пользуясь (6.21), можно определить расстояние?у между двумя соседними максимумами для случая монохроматического света, нормального падения лучей и малого угла?:

Частным случаем полос одинаковой толщины являются кольца Ньютона , возникающие в воздушной прослойке между Плосковыпуклая линзой большого радиуса кривизны R и плоской стеклянной пластиной, которые соприкасаются в точке Р. При наложении отраженных волн возникают интерференционные полосы одинаковой толщины, имеющие при нормальном падении света вид концентрических колец. В центре картины находится интерференционный минимум нулевого порядка. Это обусловлено тем, что в точке Р разность хода между когерентными лучами определяется только потерей полуволны при отражении от поверхности пластины. Геометрическим местом точек одинаковой толщины воздушной прослойки между линзой и пластиной есть круг, поэтому интерференционная картина наблюдается в виде концентрических темных и светлых колец.В проходящем свете наблюдается дополняющая картина - центральный круг светлое, следующее кольцо темное и т. д.
Найдем радиусы светлых и темных колец. Пусть d - толщина воздушного слоя на расстоянии r от точки Р. Оптическая разность хода? между лучом, который отбился от пластины, и лучом, который потерпел отражения на границе раздела выпуклая поверхность линзы - воздух. Очевидно, что в проходящем свете формулы (6.22) и (6.23) меняются местами. Экспериментальные измерения радиусов колец Ньютона позволяют рассчитать по этим формулам радиус Плосковыпуклая линзы R. Изучая кольца Ньютона в целом, нельзя давать оценку качеству обработки поверхностей линзы и пластины. Следует заметить, что при наблюдении интерференции в белом свете интерференционная картина приобретает радужной расцветки.

6.4.3. Явление интерференции света лежит в основе работы многочисленных оптических приборов - интерферометров, с помощью которых с большой точностью измеряют длину световых волн, линейные размеры тел и их изменение, а также измеряют показатели преломления веществ.
В частности, на рис. 6.12 изображена схема интерферометра Майкельсона. Свет от источника S падает под углом 450на полупрозрачную пластину Р1. Половина падающего пучка света отражается в направлении луча 1, половина проходит через пластину в направлении луча 2. Пучок 1 отражается зеркалом М1 и, возвращаясь назад, снова проходит через пластину Р1 (). Пучок света 2 идет к зеркалу М2, отражается от него и, отразившись от пластины Р1, идет в направлении луча 2 ?. Поскольку луч 1 проходит через пластину Р1 трижды, а луч 2 только один раз, то для компенсации разности хода на пути луча 2 относится пластина Р2 (такая же как и Р1, но без полупрозрачного покрытия).

Интерференционная картина зависит от положения зеркал и геометрии пучка света, падающего на прибор. Если падающий пучок параллельный, а плоскости зеркал М1 и М2 почти перпендикулярны, то в поле зрения наблюдаются интерференционные полосы равной толщины. Смещение картинки на одну полосу соответствует смещению одного из зеркал на расстояние Таким образом, интерферометр Майкельсона используется для точных измерений длины. Абсолютная погрешность при таких измерениях составляет? 10-11 (м). Интерферометр Майкельсона можно использовать для измерения малых изменений показателей преломления прозрачных тел в зависимости от давления, температуры, примесей.

А. Смакула разработал способ просветления оптических устройств для уменьшения потерь света, обусловленных его отражением от Заломного поверхностей. В сложных объективах число отражений велико, поэтому потери светового потока довольно значительны. Чтобы элементы оптических систем сделать просветленными, их поверхности покрывают прозрачными пленками, показатель преломления которых меньше, чем стекла. При отражении света на границе раздела воздух-пленка и пленка-стекло возникает интерференция отраженных волн. Толщину пленки d и показатели преломления стекла nc и пленки n подбирают так, чтобы отраженные волны гасят друг друга. Для этого их амплитуды должны быть ровными, а оптическая разность хода соответствовать условию минимума.

При падении световой волны на тонкую прозрачную пластинку (или пленку) происходит отражение от обеих поверхностей пластинки. В результате возникают две световые волны, которые при известных условиях могут интерферировать.

Пусть на прозрачную плоскопараллельную пластинку падает плоская световая волна, которую можно рассматривать как параллельный пучок лучей (рис. 122.1). Пластинка отбрасывает вверх два параллельных пучка света, из которых один образовался за счет отражения от верхней поверхности пластинки, второй - вследствие отражения от нижней поверхности (на рис. 122.1 каждый из этих пучков представлен только одним лучом). При входе в пластинку и при выходе из нее второй пучок претерпевает преломление. Кроме этих двух пучков, пластинка отбросит вверх пучки, возникающие в результате трех-, пяти- и т. д. кратного отражения от поверхностей пластинки. Однако ввиду их малой интенсивности мы эти пучки принимать во внимание не будем. Не будем также интересоваться пучками, прошедшими через пластинку.

Разность хода, приобретаемая лучами 1 и 2 до того, как они сойдутся в точке С, равна

где - длина отрезка ВС, - суммарная длина отрезков АО и ОС, - показатель преломления пластинки.

Показатель преломления среды, окружающей пластинку, полагаем равным единице. Из рис. 122.1 видно, что толщина пластинки). Подстановка этих значений в выражение (122.1) дает, что

Произведя замену и учтя, что

легко привести формулу для к виду

При вычислении разности фаз между колебаниями в лучах 1 и 2 нужно, кроме оптической разности хода , учесть возможность изменения фазы волны при отражении (см. § 112). В точке С (см. рис. 122.1) отражение происходит от границы раздела среды, оптически менее плотной, со средой, оптически более плотной. Поэтому фаза волны претерпевает изменение на . В точке О отражение происходит от границы раздела среды оптически более плотной со средой оптически менее плотной, так что скачка фазы не происходит. В итоге между лучами 1 и 2 возникает дополнительная разность фаз, равная Ее можно учесть, добавив к (или вычтя из нее) половину длины волны в вакууме. В результате получим

Итак, при падении на пластинку плоской волны образуются две отраженные волны, разность хода которых определяется формулой (122.3). Выясним условия, при которых эти волны окажутся когерентными и смогут интерферировать. Рассмотрим два случая.

1. Плоскопараллельная пластинка. Обе плоские отраженные волны распространяются в одном направлении, образующем с нормалью к пластинке угол, равный углу падения .

Эти волны смогут интерферировать, если будут соблюдены условия как временной, так и пространственной когерентности.

Для того чтобы имела место временная когерентность, разность хода (122.3) не должна превышать длину когерентности; равную (см. формулу (120.9)). Следовательно, должно соблюдаться условие

В полученном соотношении половиной можно пренебречь по сравнению с Выражение имеет величину порядка единицы. Поэтому можно написать

(удвоенная толщина пластинки должна быть меньше длины когерентности).

Таким образом, отраженные волны будут когерентными только в том случае, если толщина пластинки не превышает величины, определяемой соотношением (122.4). Положив , получим предельное значение толщины, равное

Теперь рассмотрим условия соблюдения пространственной когерентности. Поставим на пути отраженных пучков, экран Э (рис. 122.2). Приходящие в точку Р лучи и отстоят в падающем пучке на расстояние . Если это расстояние не превышает радиуса когерентности рког падающей волны, лучи 1 и 2 будут когерентными и создадут в точке Р освещенность, определяемую значением разности хода , отвечающим углу падения Другие пары лучей, идущие под тем же углом создадут в остальных точках экрана такую же освещенность. Таким образом, экран окажется равномерно освещенным (в частном случае, когда экран будет темным). При изменении наклона пучка (т. е. при изменении угла ) освещенность экрана будет меняться.

Из рис. 122.1 видно, что расстояние между падающими лучами 1 и 2 равно

Если принять то для получается а для

Для нормального падения при любом .

Радиус когерентности солнечного света имеет значение порядка 0,05 мм (см. (120.15)). При угле падения в 45° можно положить Следовательно, для возникновения интерференции в этих условиях должно выполняться соотношение

(122.7)

(ср. с (122.5)). Для угла падения порядка 10° пространственная когерентность будет сохраняться при толщине пластинки, не превышающей 0,5 мм. Таким образом, мы приходим к выводу, что вследствие ограничений, накладываемых временной и пространственной когерентностями, интерференция при освещении пластинки солнечным светом наблюдается только в том случае, если толщина пластинки не превышает нескольких сотых миллиметра. При освещении светом с большей степенью когерентности интерференция наблюдается и при отражении от более толстых пластинок или пленок.

Практически интерференцию от плоскопараллельной пластинки наблюдают, поставив на пути отраженных пучков линзу, которая собирает лучи в одной из точек экрана, расположенного в фокальной плоскости линзы (рис. 122.3). Освещенность в этой точке зависит от значения величины (122.3). При получаются максимумы, при - минимумы интенсивности ( - целое число). Условие максимума интенсивности имеет вид

Пусть тонкая плоскопараллельная пластинка освещается рассеянным монохроматическим светом (см. рис. 122.3). Расположим параллельно пластинке линзу, в фокальной плоскости которой поместим экран. В рассеянном свете имеются лучи самых разнообразных направлений.

Лучи, параллельные плоскости рисунка и падающие на пластинку под углом после отражения от обеих поверхностей пластинки соберутся линзой в точке Р и создадут в этой точке освещенность, определяемую значением оптической разности хода. Лучи, идущие в других плоскостях, но падающие на пластинку под тем же углом соберутся линзой в других точках, отстоящих от центра экрана О на такое же расстояние, как и точка Р. Освещенность во всех этих точках будет одинакова. Таким образом, лучи, падающие на пластинку под одинаковым углом создадут на экране совокупность одинаково освещенных точек, расположенных по окружности с центром в О. Аналогично, лучи, падающие под другим углом Ф" создадут на экране совокупность одинаково (но иначе, поскольку Д иная) освещенных точек, расположенных по окружности другого радиуса. В результате на экране возникнет система чередующихся светлых и темных круговых полос с общим центром в точке О. Каждая полоса образована лучами, падающими на пластинку под одинаковым углом Поэтому получающиеся в описанных условиях интерференционные полосы носят название полос равного наклона. При ином расположении линзы относительно пластинки (экран во всех случаях должен совпадать с фокальной плоскостью лйнзы) форма полос равного наклона будет другой.

Каждая точка интерференционной картины обусловлена лучами, образующими до прохождения через линзу параллельный пучок. Поэтому при наблюдении полос равного наклона экран должен располагаться в фокальной плоскости линзы, т. е. так, как его располагают для получения на нем изображения бесконечно удаленных предметов. В соответствии с этим говорят, что полосы разного наклона локализованы в бесконечности. Роль линзы может играть хрусталик, а экрана - сетчатка глаза. В этом случае для наблюдения полос равного наклона глаз должен быть аккомодирован так, как при рассматривании очень удаленных предметов.

Согласно формуле (122.8) положение максимумов зависит от длины волны Поэтому в белом свете получается совокупность смещенных друг относительно друга полос, образованных лучами разных цветов, и интерференционная картина приобретает радужную окраску. Возможность наблюдения интерференционной картины в белом свете определяется способностью глаза различать оттенки света близких длин волн. Лучи, отличающиеся по длине волны менее чем на 20 А, средний глаз воспринимает как имеющие одинаковый цвет. Поэтому для оценки условий, при которых может наблюдаться интерференция от пластинок в белом свете, следует положить равным 20 А. Именно такое значение было нами взято при оценке толщины пластинки (см. (122.5)).

2. Пластинка переменной толщины. Возьмем пластинку в виде клина с углом при вершине (рис. 122.4).

Пусть на нее падает параллельный пучок лучей. Теперь лучи, отразившиеся от разных поверхностей пластинки, не будут параллельными. Два до падения на пластинку практически сливающихся луча (на рис. 122.4 они изображены в виде одной прямой линии, обозначенной цифрой ) пересекаются после отражения в точке Q. Два практически сливающихся луча 1" пересекаются в точке Можно показать, что точки Q, Q" и другие аналогичные им точки лежат в одной плоскости, проходящей через вершину клииа О. Отразившийся от нижней поверхности клина луч V и отразившийся от верхней поверхности луч 2 пересекутся в точке R, расположенной ближе к клину, чем Q. Аналогичные лучи Г и 3 пересекутся в точке Р, отстоящей от поверхности клина дальше, чем

Направления распространения волн, отраженных от верхней и нижней поверхностей клииа, не совпадают. Временная когерентность будет соблюдаться только для частей волн, отразившихся от мест клина, для которых толщина удовлетворяет условию (122.4). Допустим, что это условие выполняется для всего клина. Кроме того, предположим, что радиус когерентности намного превышает длину клина. Тогда отраженные волны будут когерентными во всем пространстве над клином, и при любом расстоянии экрана от клина нем будет наблюдаться интерференционная картина в виде полос, параллельных вершине клина О (см. три последних абзаца § 119). Так, в частности, обстоит дело при освещении клина светом, испускаемым лазером.

При ограниченной пространственной когерентности область локализации интерференционной картины (т. е. область пространства, располагая в которой экран можно наблюдать на нем интерференционную картину) также оказывается ограниченной. Если расположить экран так, чтобы он проходил через точки (см. экран Э на рис. 122.4), на экране возникнет интерференционная картина даже в том случае, если пространственная когерентность падающей волны крайне мала (в точках экрана пересекаются лучи, которые до падения на клин совпадали).

При малом угле клина разность хода лучей можно с достаточной степенью точности вычислять по формуле (122.3), беря в качестве b толщину пластинки в месте падения на нее лучей. Поскольку разность хода для лучей, отразившихся от различных участков клина, теперь неодинакова, освещенность экрана будет неравномерной - на экране появятся светлые и темные полосы (см. на рис. 122.4 пунктирную кривую, показывающую освещенность экрана Э). Каждая из таких полос возникает в результате отражения от участков клина с одинаковой толщиной, вследствие чего их называют полосами равной толщины.

При смещении экрана из положения Э в направлении от клина или к клину начинает сказываться степень пространственной когерентности падающей волны. Если в положении экрана, обозначенном на рис. 122.4 через Э, расстояние между падающими лучами 1 и 2 станет порядка радиуса когерентности, интерференционная картина на экране Э наблюдаться не будет. Аналогично картина исчезает в положении экрана, обозначенном через

Таким образом, интерференционная картина, получающаяся при отражении от клина плоской волны, оказывается локализованной в некоторой области вблизи поверхности клина, причем эта область тем уже, чем меньше степень пространственной когерентности падающей волны. Из рис. 122.4 видно, что по мере приближения к вершине клина становятся более благоприятными условия как временной, так и пространственной когерентности. Поэтому отчетливость интерференционной картины уменьшается при перемещении от вершины клина к его основанию. Может случиться, что картина наблюдается только для более тонкой части клина. Для остальной части на экране возникает равномерная освещенность.

Практически полосы равной толщины наблюдают, поместив вблизи клина линзу и за ней экран (рис. 122.5). Роль линзы может играть хрусталик, а роль экрана - сетчатка глаза. Если экран за линзой расположен в плоскости, сопряженной с плоскостью, обозначенной на рис. 122.4 через Э (соответственно глаз аккомодирован на эту плоскость), картина будет наиболее четкой. При перемещении экрана, на который проектируется изображение (либо при перемещении линзы), картина будет ухудшаться и исчезнет совсем, когда плоскость, сопряженная с экраном, выйдет за пределы области локализации интерференционной картины, наблюдаемой без линзы.

При наблюдении в белом свете полосы будут окрашенными, так что поверхность пластинки или пленки представляется имеющей радужную окраску. Такую окраску имеют, например, расплывшиеся на поверхности воды тонкие пленки нефти или масла, а также мыльные пленки. Цвета побежалости, возникающие на поверхности стальных изделий при их закалке, тоже обусловлены интерференцией от пленки прозрачных окислов.

Сопоставим два рассмотренных нами случая интерференции при отражении от тонких пленок. Полосы равного наклона получаются при освещении пластинки постоянной толщины ) рассеянным светом, в котором содержатся лучи различных направлений варьирует в более или менее широких пределах). Локализованы полосы равного наклона в бесконечности. Полосы равной толщины наблюдаются при освещении пластинки непостоянной толщины изменяется) параллельным пучком света ). Локализованы полосы равной толщины вблизи пластинки. В реальных условиях, например при наблюдении радужных цветов на мыльной или масляной пленке, изменяется как угол падения лучей, так и толщина пленки. В этом случае наблюдаются полосы смешанного типа.

Заметим, что интерференция от тонких пленок может наблюдаться не только в отраженном, но и в проходящем свете.

Кольца Ньютона. Классическим примером полос равной толщины являются кольца Ньютона. Они наблюдаются при отражении света от соприкасающихся друг с другом плоскопараллельной толстой стеклянной пластинки и плосковыпуклой линзы с большим радиусом кривизны (рис. 122.6). Роль тонкой пленки, от поверхностей которой отражаются когерентные волны, играет воздушный зазор между пластинкой и линзой (вследствие большой толщины пластинки и линзы за счет отражений от других поверхностей интерференционные полосы не возникают). При нормальном падении света полосы равной толщины имеют вид концентрических окружностей, при наклонном падении - эллипсов. Найдем радиусы колец Ньютона, получающихся при падении света по нормали к пластинке. В этом случае и оптическая разность хода равна удвоенной толщине зазора (см. формулу (122.2); предполагается, что в зазоре ). Из рис. 122.6 следует, что - радиусы темных колец. Значению соответствует т. е. точка в месте касания пластинки и линзы. В этой точке наблюдается минимум интенсивности, обусловленный изменением фазы на при отражении световой волны от пластинки.

Просветление оптики. Интерференция при отражении от тонких пленок лежит в основе просветления оптики. Прохождение света через каждую преломляющую поверхность линзы сопровождается отражением примерно 4% падающего света. В сложных объективах такие отражения совершаются многократно и суммарная потеря светового потока достигает заметной величины. Кроме того, отражения от поверхностей линз приводят к возникновению бликов. В просветленной оптике для устранения отражения света на каждую свободную поверхность линзы наносится тонкая пленка вещества с показателем преломления иным, чем у линзы. Толщина пленки подбирается так, чтобы волны, отраженные от обеих ее поверхностей, погашали друг друга. Особенно хороший результат достигается в том случае, если показатель преломления пленки равен корню квадратному из показателя преломления линзы. При этом условии интенсивность обеих отраженных от поверхностей пленки волн одинакова.