Определение лактатного порога на велотренажере. Определение уровня анаэробного порога. Замер зоны частоты пульса лактатного порога

Рис. 21. Взаимосвязь интенсивности физической нагрузки (скорости плавания) и аккумуляции лактата в крови.

Порог лактата определяют как момент начала аккумуляции лактата в крови во время физической нагрузки увеличивающейся интенсивности сверх уровней, характерных для состояния покоя. Если интенсивность мышечной деятельности небольшая или средняя, уровень лактата лишь немного превышает показатель в состоянии покоя. Увеличение интенсивности приводит к более быстрой аккумуляции лактата. При невысокой скорости плавания (рис. 21) уровни лактата равны или близки к уровням, характерным для состояния покоя. При увеличении скорости плавания более 1,4 м-с _| уровни лактата крови быстро повышаются. Эта точка разрыва непрерывности на кривой соответствует порогу лактата.

Лактатный порог -

это момент, когда во время выполнения физической нагрузки происходит быстрая аккумуляция лактата в крови, превышающая уровни лактата в покое.

интенсивность нагрузки, при которой происходит систематическое повышение уровня лактата в крови, называется лактатным порогом.

рабочая нагрузка, при которой начинается нелинейное повышение концентрации лактата в крови

В практической физиологии было мало тем, которые исследовались бы больше или обсуждались бы более горячо, чем лактатный порог.

По мнению некоторых исследователей, порог лактата отражает значительный сдвиг в сторону анаэробного гликолиза, вследствие которого образуется лактат. Поэтому значительное повышение уровня лактата крови при увеличении усилия называют анаэробным порогом.

В первой половине прошлого столетия Douglas с соавт. обнаружили, что при некотором уровне нагрузки концентрация лактата в крови увеличивается, что сопровождается снижением концентрации бикарбонатных ионов и усилением дыхания. Позднее Wasserman и Holtmann разработали концепцию «порога анаэробной нагрузки организма» и неинвазивные методы его определения, связав повышение концентрации лактата с возникающим кислородным долгом. В настоящее время гипотеза анаэробного лактатного порога подвергается резкой критике со стороны физиологов и биохимиков. Результаты экспериментов с применением радиоизотопной методики в состоянии мышечного покоя и данные, полученные Connett et al. показывают, что лактат образуется и в условиях достаточного поступления кислорода. Таким образом, продукция лактата не обязательно связана с анаэробными условиями, то есть образованием АТФ при дефиците кислорода. В настоящее время общепризнанным является тот факт, что измерение концентрации лактата в крови не дает информации о скорости его образования, а лишь отражает баланс между выходом лактата в кровь и его устранением из крови. Современные приемы биохимии позволяют нам исследовать легочную вентиляцию, буферные системы организма, динамику закисления и нейтрализации лактата прямыми, а не косвенными методами, подтвердив или опровергнув концепцию анаэробного порога.

Почему важен лактатный порог?

Лактатный порог для конкретного человека, выполняющего определенную работу, относительно постоянен. Исследования показывают, что интенсивность нагрузки при лактатном пороге соответствует максимальной интенсивности работы, которая может поддерживаться на постоянном уровне. Это означает, что чем выше лактатный порог, тем выше интенсивность продолжительной работы. Проще говоря, при одинаковых значениях V02 шах вы сможете длительное время бежать, например, на 70% или только на 50% ваших максимальных возможностей, в зависимости от величины лактатного порога.

Рис. 22. Смещение кривой лактата вправо - увеличение возможнос­тей аэробной системы энергообеспечения

Рис. 23. Смещение кривой лактата влево - снижение (перенапряжение) возможностей аэробной системы энергообеспе­чения.

Смещение кривой лактата при выполнении стандартной нагрузки. Увеличение возможнос­тей аэробной системы энергообеспечения сопро­вождается уменьшением количества лактата при выполнении стандартной нагрузки смешанного аэ­робно-анаэробного характера или увеличением работоспособности при одних и тех же показате­лях лактата.
На рис. 22 приведен пример оценки аэробных возможностей и эффективности протекания процесса адаптации в целом по пока­зателям скорости бега и концентрации лактата в крови. Существенное увеличение скорости при об­следованиях с интервалом 1 год сопровождается одной и той же концентрацией лактата в крови, что свидетельствует об эффективной адаптации и повышении возможностей аэробной системы энер­гообеспечения. Смещение кривой лактата влево является свидетельством перегрузки и снижения возможностей аэробной системы энергообеспе­чения (рис. 23).

Как определяется лактатный порог?

Обычно выполняется проба с возрастающей нагрузкой, при которой проводится периодическое измерение содержания лактата артериальной крови, забираемой через катетер. Рабочая нагрузка постепенно возрастает до тех пор, пока не станет максимально допустимой. Строится график зависимости концентрации лактата в крови от величины рабочей нагрузки и определяется точка перегиба линейной зависимости.

Можно ли определить лактатный порог без использования артериального катетера?

Да. Лактатный порог можно оценить по данным газообмена, получаемым при непрямой газовой калориметрии. В этом случае сразу после достижения лактатного порога и изменения артериального рН наступает остановка дыхания или непропорциональное усиление дыхания в ответ на изменение рабочей нагрузки. Эта остановка называется дыхательным порогом.

Рис. 24. Внешнее и внутреннее дыхание

Изучение влияния физической нагрузки на вентиляцию легких приводит к пониманию системы дыхания как единого и взаимосвязанного процесса: вентиляция (внешнее, легочное дыхание) , сердечно- сосудистая транспортная система и внутреннее дыхание(рис. 24).

Рис. 25. Взаимодействие различных систем энергетического обеспечения физической нагрузки

Взаимодействие дыхательной, сердечно-сосудистой и микроциркуляторной систем в процессе доставки кислорода и удаления продуктов обмена для обеспечения синтеза АТФ в митохондриях показано на рис. 25. Каждая система должна работать оптимально, чтобы наилучшим образом удовлетворять потребности работающей скелетной мышцы. Системой, лимитирующей нагрузку, всегда оказывается наименее тренированная.

Какая система организма является лимитирующим фактором, причиной ограничения физической активности?

Согласно центральной теории, причиной ограничения величины максимальной физической нагрузки оказывается недостаточное количество кислорода, доставляемого к скелетной мускулатуре. Доставку кислорода обеспечивает сердечно-сосудистая система. Важную роль сердечно-сосудистой системы в поддержании поглощения кислорода показывает уравнение Фика. Как только ударный объем достигает максимального значения, дальнейшее увеличение сердечного выброса может происходить только за счет увеличения частоты сердечных сокращений. Если ЧСС превышает 200 уд/мин, уменьшается время наполнения сердца кровью и также фактически уменьшается ударный объем. Таким образом, необходим баланс между достаточно высокой ЧСС и возможно малым временем наполнения желудочков. Поскольку минутный объем и частота дыхания могут увеличиваться даже при потреблении 0 2 , равному МПК, т. е. когда максимум ЧСС уже достигнут, лимитирующим фактором обычно считается сердечно-сосудистая система . Плюс ко всему, необходимость доставки крови к сосудам кожи для обеспечения потоотделения и теплоотдачи вызывает конкурентное распределение кровотока между кожей и скелетными мышцами.

Ограничивает ли дыхание физические возможности?

Несмотря на то, что при ряде заболеваний дыхательная система может ограничивать физические возможности, у здоровых людей дыхание не считается фактором, лимитирующим физическую нагрузку. Диафрагма обладает в два-три раза большими окислительными способностями и плотностью капилляров по сравнению с другими скелетными мышцами, экономно расходует гликоген и устойчива к утомлению. В ней преобладает окисление жиров, что делает ее менее зависимой от содержания гликогена и углеводов. У здоровых людей даже при максимальной физической нагрузке выходящая из легких кровь практически полностью насыщена кислородом, что свидетельствует о большой функциональной емкости этой системы.

Может ли система дыхания когда-либо ограничивать физическую активность?

1) Легочная вентиляция обычно не является фактором, лимитирующим мышечную деятельность у здоровых людей даже при максимальном усилии.

2) Респираторная система может ограничивать мышечную деятельность у людей с респираторными заболеваниями.

3) У спортсменов и тренированных людей, выполняющих продолжительную тяжелую физическую работу, дыхание может ограничивать нагрузку, когда лимитирующим фактором становится конкуренция дыхательных и скелетных мышц за приток крови и за кислород.

Чем отличаются аэробные (кардио) и анаэробные (силовые) тренировки, и почему мы не может выполнять подтягивания на перекладине или отжимания на брусьях так же долго, как крутить педали велосипеда или бегать? Секрет кроется в существовании так называемого анаэробного порога, который при его достижении, начинает "отключать" наши мышцы.

Наша физическая активность на базовом уровне представляет собой окислительный процесс, происходящий в клетках мышечных тканей при участии сердечнососудистой и дыхательной систем. Как известно из школьных курсов биологии и химии, данный процесс происходит при участии кислорода, поступающего в мышцы от сердца через артерии и сеть мелких кровеносных сосудов, капилляров, с дальнейшим выделением энергии. На месте кислород замещается углекислым газом, и насыщенная им кровь уже по венам обратно через сердце поступает в легкие, а далее через органы дыхания вне нашего тела.

Перейдём к чуть более подробному рассмотрению вопроса с точки зрения биохимии. Основным и самым универсальным источником энергии для повседневной активности и в принципе любых метаболических процессов живого организма является глюкоза (C6H12O6). Однако в чистом виде ни у животных, ни у растений это соединение не находится. В нашем случае при необходимости восстановления это жизненно важное соединение образуется посредством ферментного расщепления сложного полисахарида (C6H10O6)n, гликогена. Его запасы находятся в мышечных тканях (примерно 1% от общей массы, при активной нагрузке расходуются в первую очередь) и в печени (до 5-6% от массы, примерно 100 – 120 г для взрослого человека). Стоит отметить, что только гликоген, запасённый в клетках печени, (т.н. гепатоцитах) может быть переработан в глюкозу для питания организма в целом.

Под воздействием поступаемого извне кислорода расщепленный гликоген распадается на глюкозу, которая, окисляясь (процесс называется гликолизом), высвобождает необходимую для обменных процессов энергию. Гликолиз после своей первой стадии, когда одна молекула глюкозы расщепляется на две молекулы пировиноградной кислоты или пирувата, может протекать по двум различным сценариям:

Аэробному (при участии кислорода)

1. Количество кислорода, единовременно поступающего к мышцам, достаточно для протекания окислительных реакций и полного расщепления углеводов;

2. Потребление углеводных запасов и метаболизм в целом носят плавный, размеренный характер;

3. Молекулы пирувата используются, в основном, для выработки энергии в митохондриях (энергетических клетках) и, в конечном итоге, они расщепляются до простейших молекул воды и углекислого газа;

4. Образующийся в мышечных тканях побочный продукт в виде лактата (в литературе также встречается термин «молочная кислота», хотя химически лактат - это соль этой самой молочной кислоты, и образуется она практически сразу из-за нестабильности первого соединения) успевает выводиться без накопления за счёт активности аэробных ферментов в митохондриях.

Анаэробному (без кислорода)

1. Количество кислорода, единовременно поступающего к мышцам, недостаточно для плавного протекания окислительных реакций (хотя современные исследования учёных позволяют заявить, что анаэробный процесс работает и при достаточном получении мышцами кислорода, чаще всего это связано с неспособностью сердечнососудистой системы по разным причинам быстро выводить лактат);

2. Характеризуется резким уровнем потребления углеводных запасов и неполным расщеплением сложных углеводов;

3. Темпы гликолиза превышают темпы использования пирувата митохондриями, посредством быстрого химического распада у животных он расщепляется с образованием лактата (у растений же, кстати, при этом, образуется другое, всем известное соединение, этанол);

4. Лактат начинает накапливаться и не успевает выводиться из мышечных тканей кровеносной системой. Однако его накопление, вопреки распространенному убеждению, не является первопричиной мышечной усталости. Прежде всего, накопление лактата – это защитная реакция нашего организма на падение концентрации глюкозы в крови.
- снижение рН, связанное с накоплением лактата, лишает ферментов активности и, как следствие, ограничивает аэробную и анаэробную выработку энергии.

При увеличении нагрузки во время длительной физической активности первый механизм расщепления гликогена рано или поздно переходит во второй. Всё определяется соотношением между скоростью выработки лактата, его диффузией в кровь и поглощением мышцами, сердцем, печенью и почками. Лактат образуется даже в состоянии покоя (попадая из мышц в систему кровообращения, он в итоге либо перерабатывается в глюкозу в печени, либо используется как топливо), но пока темпы его выработки равны потреблению, никаких функциональных ограничений не появляется. Таким образом, существует некая граница или порог, при котором скорость накопления этого самого лактата начинает превышать скорость его выведения.

С точки зрения биохимии анаэробный порог (АнП, в некоторых источниках «лактатный») – это величина (единицы измерения: мл/кг/мин), показывающая, какое количество кислорода может потреблять человек (на единицу своей массы) без накопления молочной кислоты.
С точки зрения тренировочной активности, АнП – это интенсивность (проще всего за основу взять частоту сердечных сокращений, ЧСС) упражнения, при котором нейтрализация лактата не поспевает за его выработкой.

Как правило, ЧСС АнП примерно равно 85 – 90% от максимальной ЧСС. Последнюю величину можно измерить, либо сделав серию коротких спринтерских рывков на 60 – 100 м с последующим замером при помощи пульсометра величины ЧСС и подсчёта среднего значения. Либо посредством выполнения «на скорость» и максимально возможное количество повторений двух-трёх серий силовых упражнений со своим весом, таких как, например: подтягивания, отжимания на брусьях, плиометрические отжимания от пола, бурпи, приседания и пр. Главное – резкость движения, скорость и максимальная работа «до отказа». Замеры по пульсометру проводятся после каждой серии, в конце также высчитывается среднее значение, которое затем и берётся за основу. Очевидно, что полученный результат строго индивидуален и в определенном приближении его можно считать ориентиром своего реального значения АнП. Наиболее точно же замеры значения порога проводятся либо при помощи специальных портативных лактометров, либо с использованием сложного лабораторного оборудования по заранее разработанным и утвержденным методикам. Тем не менее существуют условные рекомендуемые пульсовые зоны, соответствующие тому или иному характеру тренировки в зависимости от возраста человека.

Тренировка сердечнососудистой системы и выносливости – это всегда занятия при ЧСС, немного меньшем значения АнП. В свою очередь наиболее эффективные с точки зрения жиросжигания, то есть активизации липидного обмена – это тренировки на низком (50-60% от максимума) пульсе.

Можно ли каким-то образом увеличить значение АнП?

Конечно! Более того, анаэробный порог можно повышать на протяжении всей своей жизни (в отличие от, например, уровня максимального потребления кислорода, который рано или поздно выйдет на плато, ограничение, вызванное генетическими факторами, в частности, уровнем гемоглобина в крови). Исследования показывают, что повышение АнП происходит двумя путями: как за счёт снижения уровня производства лактата, так и, наоборот, за счёт увеличения скорости его выведения.
Если представить, что кислород – это то же топливо, как, например, бензин, а наше сердце – не что иное, как двигатель внутреннего сгорания, то по аналогии с конструкцией разных производителей – один отдельно взятый человек будет потреблять тот же кислород более экономично, чем другой. Однако, как и двигателю, всей сердечной респираторной системе посредством специализированных тренировок можно сделать своеобразный «чип-тюнинг».

Здесь работает всем известный принцип. Хочешь улучшить какое-то качество в себе? Дай ему стимул для роста. Соответственно, чтобы увеличить свой АнП, необходимо регулярно проводить тренировки на уровне ЧСС, чуть выше его значения (условно, 95% от максимальной ЧСС). Например, если твой текущий АнП находится на ЧСС 165 уд/мин, то одну, максимум две тренировки в неделю надо проводить при пульсе 170 уд/мин.

Таким образом, существует четыре основных адаптационных изменения, приводящих к увеличению анаэробного порога.

1. Увеличение количества и размера митохондрий (они являются факторами аэробного производства энергии в мышечных клетках). Итог: больше энергии аэробным путём.

2. Повышение плотности капилляров. Итог: на одну клетку приходится больше капилляров, повышается эффективность доставки питательных веществ и удаления побочных продуктов

3. Увеличение активности аэробных ферментов (являются ускорителями химических реакций в митохондриях). Итог: больше энергии за более короткий промежуток времени

4. Повышение миоглобина (по аналогии с гемоглобином в крови переносит кислород в мышечных тканях от мембраны к митохондриям). Итог: повышение концентрации миоглобина, а значит – увеличение количества кислорода, доставляемого к митохондриям для выработки энергии.

Анаэробный порог (АнП) - уровень потребления кислорода, выше которого анаэробная продукция высокоэнергетических фосфатов (АТФ) дополняет аэробный синтез АТФ с последующим снижением окислительно-восстановительного состояния цитоплазмы, увеличением отношения Л/П, и продукцией лактата клетками, находящимися в состоянии анаэробиоза (ПАНО).

Энциклопедичный YouTube

    1 / 3

    ✪ ч4-2 Ациклическая #аэробика, чистка сосудов, #анаэробный порог Методология #ОФК #Селуянов

    ✪ ПАНО/МПК - Буткявичус Сергей

    ✪ ч3-10 #Сосуды, #холестерин, атеросклироз, гормоны, Спортивная адаптология #ОФК #Селуянов

    Субтитры

Основные сведения

При выполнении нагрузок высокой интенсивности рано или поздно доставка кислорода к клеткам становится недостаточной. В результате этого клетки оказываются вынуждены получать энергию не только аэробным путём (окислительное фосфорилирование), но и с помощью анаэробного гликолиза. В норме образовавшиеся в ходе гликолиза НАДН*H + передают протоны в электронтранспортную цепь митохондрий, но из-за недостатка кислорода они накапливаются в цитоплазме и тормозят гликолиз. Чтобы позволить гликолизу продолжаться, они начинают передавать протоны на пируват с образованием молочной кислоты. Молочная кислота в физиологических условиях диссоциирована на ион лактата и протон. Ионы лактата и протоны выходят из клеток в кровь. Протоны начинают забуфериваться бикарбонатной буферной системой с выделением избытка неметаболического СО 2 . При забуферивании происходит снижение уровня стандартных бикарбонатов плазмы крови.

Величина анаэробного порога у активно тренированных спортсменов примерно равна 90 % от МПК .

Не у всех бегунов (особенно ветеранов) происходит загиб кривой пульса на графике скорости в этом тесте.

Метод скоростного отношения V-slope

Реализуется при выполнении нагрузки до отказа по типу рамп-протокола. Строится график зависимости скорости выделения СО2 от скорости потребления О2. По возникновению резкого внезапного роста графика определяется наступление порога лактатного ацидоза. Собственно, определяется появление избыточного неметаболического СО2. Порог, определенный по данным газоанализа, называется газообменным или вентиляторным. Стоит отметить, что Вентиляторный Порог происходит обычно при уровне Дыхательного коэффициента от 0,8-1 и поэтому определение его по достижению дыхательным коэффициентом 1 является очень грубым приближением. Делать такое приближении недопустимо.

Способы увеличения

Для увеличения способности мышц перерабатывать лактат, что повышает общую скорость бега на длинные дистанции, рекомендуется интервальные, горные, темповые и соревновательные тренировки проводить в диапазоне, который начинается от уровня на 10 % ниже анаэробного порога и заканчивается уровнем анаэробного порога .

Необходимо нормализовать трофотропную функцию организма (детоксикационные ванны, разгрузочно-диетическая терапия, нормализация сна, питания и др.); восстановление эрготропной функции организма (физическая и гипоксическая тренировки, закаливание, гипербарическая оксигенация и др.).

Этому событию придумано множество названий: анаэробный порог, лактатный порог, ПАНО… его еще как-то называют, сейчас уже и не припомню. Как ни называй это состояние, оно является ключевым в оценке физического состояния спортсменов циклических видов спорта. Из множества терминов, я привык использовать анаэробный порог (АнП), его и буду использовать в этой статье.

Казалось бы, для чего нужно вводить какие-то непонятные пороги, когда можно поставить спортсмена на некую дистанцию и дать ему пробежать/проехать/проплыть…/преодолеть ее? Нехитрый способ следить за прогрессом физической формы, используя секундомер, безусловно, имеет право на существование. Однако, в нем есть свои недостатки. Самый главный недостаток — спортсмен может преодолевать дистанцию с разной тактикой. Условно, бегун может мощно ускориться на старте, размеренно в середине и конце, или наоборот, прибавить на финише. Вариаций существует масса и от этого сильно зависит конечный результат. Поэтому, смысл тестирования физической формы, по времени прохождения дистанции есть лишь тогда, когда спортсмен двигается на уровне АнП. И мы снова пришли к анаэробному порогу.

Давайте, наконец-то разберемся, что такое АнП. У человека существуют окислительные мышечные волокна (ОМВ) и гликолитические мышечные волокна (ГМВ). ОМВ работают с участием кислорода, а основным их энергоресурсом являются жиры; ГМВ работают без кислорода, их энергоресурсом являются углеводы. ГМВ включаются в работу только в том случае, когда задействованы все ОМВ. Функционируя, ГМВ образуют лактат, пока он находится в допустимых пределах, организм способен от него освобождаться, но если увеличить мощность, уровень лактата станет слишком высоким для продолжения работы. Резкий скачек уровня лактата в крови сопровождается снижением работоспособности мышц (мощность падает), этот перелом и называют анаэробным порогом .

Наиболее точно определить АнП можно с помощью пробы крови, непосредственно во время тренировки, когда концентрация лактата в крови резко возрастет — это и будет анаэробный порог. Брать кровь во время тренировок весьма неудобно, поэтому есть смысл рассмотреть другие методы определения АнП. В 1982 физиолог Франческо Конкони предложил свой метод измерения АнП, в последствии процедура стала называться тестом Конкони. Суть теста заключается в следующем: нужен стадион, либо любая другая зацикленная дорога, на которой можно отсчитывать круги, пульсометр и секундомер. Спортсмен преодолевает первый круг в спокойном темпе, по его завершению помощник записывает время и ЧСС. На следующем круге спортсмен прибавляет мощность, а ассистент вновь фиксирует данные о времени круга и ЧСС. Так продолжается до тех пор, пока удается улучшать время на 1 круге. Тест заканчивается отказом и сильным закислением спортсмена. Далее строится линейный двухмерный график, по одной оси откладывается пульс, по другой время круга. То место, где линии пересекаются и есть АнП. В итоге теста получаем результат, что АнП наступил на пульсе «таком-то», при «такой-то» мощности (или скорости, или времени круга). Именно мощностью на АнП и характеризуется физическая форма спортсмена.

Как правило, опытный спортсмен прекрасно знает, когда у него наступит АнП и может контролировать свою мощность, держась очень близко к АнП. Если не уходить за пределы порога, можно двигаться по дистанции с постоянной скоростью очень долго. Задача спортсмена в циклических видах спорта, на соревновании работать максимально близко к АнП, не выходя за порог. Как это определить непосредственно в забеге или гонке? Можно ориентироваться на показания пульсометра, если вы знаете, что АнП у вас на пульсе 160, значит в соревновании (по крайней мере до финиша), стоит работать на пульсе ниже 160, в диапазоне 150-160 уд./мин. Есть еще один способ — по отклику организма. Можно работать с небольшим закислением и держать постоянную мощность, с опытом вы прочувствуете эту зону и точно будете знать скорость, с которой можно двигаться не выходя за АнП.

В видах спорта на выносливость существует своя методология. Ключевым понятием здесь является анаэробный порог (АнП). Чаще всего этот термин используется в велоспорте, в беге, в лыжных гонках, в спортивной ходьбе, в плавании и гребле. АнП является главной отправной точкой при выборе тренировочных нагрузок, а также в построении планов на соревнованиях. Опираясь на данный показатель, подбирают режим тренировок, определяют при тестировании уровень спортивной подготовки. Существует два аэробная и анаэробная. Чем они отличаются и как определить порог?

Аэробный и анаэробный порог

Уровень интенсивности нагрузок определяется порогом анаэробного обмена (ПАНО). При достижении этой точки (порога) в крови резко повышается концентрация лактата, при этом скорость образования его в организме становится значительно выше скорости утилизации. Рост такой обычно начинается, если концентрация лактата превышает показатель в 4 ммоль/л. Порог анаэробного обмена достигается примерно в 85 % максимального показателя пульса, а также при 75 % максимума потребления кислорода.

Первый прирост концентрации лактата фиксирует первую пороговую точку - аэробный порог. До этой ступени нет существенного роста анаэробного метаболизма.

Аэробная и анаэробная спортивная активность отличаются энергетическими ресурсами, которые организм использует в момент тренировки.

Аэробные или кардионагрузки в качестве ресурса используют кислород. Анаэробные (силовые занятия) используют «готовое топливо» из мышечных тканей, в среднем его хватает на 12 секунд, после чего тренировка вновь становится аэробной.

Два этих вида нагрузок отличаются процессом выполнения упражнений:

  • При анаэробной тренировке увеличиваются весовые параметры, количественно сокращаются повторы и отдых между подходами.
  • В аэробной тренировке снижаются весовые параметры, повторы количественно увеличиваются, передышки минимальны.

Влияние анаэробной нагрузки

Силовые нагрузки анаэробного типа способствуют росту мышечной массы, ее усилению и укреплению. Очень важно соблюдать при этом правильное питание, в противном случае мышечное наращивание будет осуществляться путем задействования менее активных групп мышц. У женщин уровень тестостерона понижен, поэтому им это не грозит.

При нагрузках силового типа происходит меньший расход калорий, чем в типа, где потребление их мышцами идет в большом количестве. Другими словами, чем больше мышц, тем больше в течение дня происходит сжигание калорий, если даже отсутствует физическая активность.

Если в силовых тренировках достигается порог анаэробного обмена, то ускоряется метаболический процесс, а он влияет на сжигание жиров. Эффект пи этом сохраняется на протяжении полутора суток. Если вес мышц превысит массу жира, даже при отсутствии общего снижения веса, объем тела будет уменьшаться.

Польза силовых нагрузок

Включая в тренировки анаэробные нагрузки, можно достичь невероятных результатов, снизить риск возникновения многих заболеваний. Польза их состоит в следующем:

  • Плотность костной ткани постоянно развивается.
  • Сердечно-сосудистая система укрепляется.
  • Предотвращение возможности развития сахарного диабета. Анаэробные нагрузки используют в комплексе лечения заболевания.
  • Риск развития онкологических заболеваний снижается.
  • Улучшается общее состояние организма, сон.
  • Происходит очищение организма от различных токсинов.
  • Очищение кожного покрова.

Анаэробный порог: определение

Порогом анаэробного обмена называется переход из аэробной энергообеспечивающей системы в анаэробную, где рост скорости и образование молочной кислоты передается из медленной фазы в быструю. У спортсменов такой пример можно наблюдать при интенсивном беге. Каждый спринтер стремится определить свой анаэробный порог.

Очень важно на средних и длинных дистанциях при возрастающей скорости управлять ростом молочной кислоты в мышцах.

При правильно выбранной тренировочной программе скорость накопления лактата сдвигается в сторону увеличения скорости бега, приближается к максимальной частоте сердечных сокращений (ЧСС). Другими словами, бегун может дольше бежать при высоком пульсе, сохраняя высокий темп.

Каждый, кто работает над ростом спортивных показателей, стремится узнать свой анаэробный порог. Тренировки проводятся в темпе выше этого порога и немного ниже него.

Необходимо знать свои рабочие зоны интенсивности, темп, ЧСС, при которых достигается порог, скачок уровня лактата в крови.

Лабораторные исследования

Лучший метод определения ПАНО - это лабораторные исследования. При прохождении теста в лабораторных условиях спортсмен несколько минут бежит с разной скоростью. Чтобы определить уровень лактата, из его пальца берут кровь.

Стандартный тест имеет шесть этапов продолжительностью по пять минут каждый. При прохождении каждого нового этапа скорость бега увеличивается. Перерыв между ними в одну минуту позволяет взять анализ крови. На первом этапе скорость медленнее темпа марафонского забега, на последнем - соревновательный темп на дистанцию 5 км. После снятия показаний физиолог выстраивает график, из него видно, где порог анаэробного обмена соответствует определенным цифрам ЧСС и темпу бега.

График дает возможность наглядно увидеть, где уровень лактата начинает резко увеличиваться.

Естественно, что данный тест любителям-бегунам не под силу, дорого, да и не в каждом городе есть такие исследовательские лаборатории. Спортсмены такую процедуру выполняют постоянно, так как анаэробный порог может со временем изменяться. Существуют и другие способы, позволяющие определить ПАНО.

Бег на время

Для прохождения теста потребуется дорожка с уклоном в 1 %, любая поверхность, где можно быстро и беспрепятственно двигаться и замерить точно пройденное расстояние. Из приборов понадобится пульсометр и секундомер. Чтобы определить свой анаэробный порог, тест нужно проходить с новыми силами, отдохнувшим и свежим.

Сначала темп бега легкий, разогревочный. Затем засеките время на полчаса и бегайте насколько это возможно в максимальном темпе. Здесь главное - не допустить распространенную ошибку - высокий темп вначале, и полное снижение из-за усталости в конце. Это сказывается на результатах теста. Чтобы определить анаэробный порог, пульс замеряют через 10 минут после старта, затем по окончании бега. Показатели суммируются, результат делится пополам - это и есть ЧСС, при которой ваш организм достигает своего ПАНО.

Многие исследования подтверждают точность и достоверность данного теста, если он проводился с соблюдением всех необходимых условий. Рекомендуется всем бегунам-любителям.

Измерение портативным лактометром

Если нет возможности замерить уровень анаэробного порога в лабораторных условиях, можно воспользоваться портативным лактометром Accusport Lactate при беге на беговой дорожке либо тред-миле. Данный прибор доказал свою точность, он верно показывает уровень лактата. Исследование сопоставимо с лабораторными исследованиями. Стоит прибор несколько тысяч рублей. Если сравнивать цену со стоимостью анализаторов лактата, которые используются в лаборатории, то это намного дешевле. Часто такой прибор покупают вскладчину, в секциях, в спортивных школах.

Соревновательные показатели

Как определить анаэробный порог, опираясь на соревновательные показатели? Метод этот менее технологичный. Показатель вычисляют, основываясь на цифрах соревновательных результатов. У бегунов со стажем АнП соответствует примерно темпам на дистанциях от 15 км до полумарафона (21 км). Все дело в том, что именно на этих дистанциях у бегуна определяется темп величиной анаэробного порога. Короткие дистанции спортсмен часто преодолевает, превосходя свой АнП, на марафоне темп немного ниже АнП. Если бегун выступает чаще на коротких дистанциях, то темп анаэробного порога будет медленнее на 6-9 с/км в соревновательном 10 км темпе. По показаниям ЧСС также можно найти темп, который стимулирует анаэробный порог (ПАНО), это пульс в 80-90 % от резерва и 85-92 % от максимума ЧСС. Тем не менее у каждого спортсмена эта взаимосвязь варьируется, в зависимости от возможностей организма и генетических особенностей.

Как повысить анаэробный порог (АнП)

Тренировки на уровне собственного ПАНО для бегунов длинных дистанций являются очень важными, но многие не знают, как повысить анаэробный порог. Метод этот довольно прост - всего лишь нужно бегать на уровне выше АнП.

АнП-тренировки на первый взгляд кажутся просто скоростной работой, но рассматривать их нужно как способ повышения выносливости, поддержания заданного темпа на длительное время.

АнП-тренировки подразделяются на три вида. Их главная задача - держать бег в темпе, когда лактат в крови начинает накапливаться. Если бег слишком медленный, то тренировочное воздействие не влияет на повышение анаэробного порога. При слишком быстром беге молочная кислота не дает выдерживать высокий темп длительное время. Нужное воздействие оказывают тренировки, когда удается удерживать соответствующую интенсивность.

Основными видами тренировок, повышающими АнП, являются темповый бег, АнП-интервалы и горные АнП-тренировки. Интенсивность во время всех тренировок должна быть умеренной, то есть высокой, но такой, чтобы вы смогли удержать ее длительное время. Если темп превышается на 6 с/км, то старайтесь двигаться медленнее. Если на следующий день вы чувствуете боль в мышцах, значит беговая скорость была превышена.

Темповый бег

Темповый бег - классическая тренировка анаэробного порога, бег поддерживается на ПАНО на протяжении 20-40 минут. Выглядит она следующим образом:

  • В качестве разминки - 3 км легкого бега.
  • Соревновательный темп - 6 км.
  • Для заминки непродолжительная трусца.

Тренировка выполняется на шоссе или беговой дорожке. Лучше проводить тренировку на размеченной трассе, чтобы была возможность отслеживать этапы и темп. Пользуясь монитором сердечного ритма, можно использовать показатели ЧСС для того, чтобы подобрать правильные значения для последующих тренировок. Уже через несколько дней спортсмены чувствуют свой нужный темп на уровне АнП. Как показывают исследования, те спортсмены, которые уловили однажды свой темп АнП, далее воспроизводят его с большей точностью. Старты на 5-10 км - это хорошая альтернатива темповой тренировке. Но здесь нужно осторожнее преодолевать дистанцию, не увлекаться забегом, используя свои силы на предельных возможностях.

АнП-интервалы

Подобного воздействия можно добиться, разбив весь забег на несколько отрезков (2-4). Подобный род тренировки, который получил название «неспешные интервалы» предложил спортивный физиолог Джек Дэниэлс. К примеру, на уровне АнП трижды повторяется бег по 8 минут, между интервалами трехминутный трусцовый бег. В общем получается на уровне АнП 24 минуты бега. Такой имеет свой недостаток: отсутствует психологическая нагрузка, которая характерна для непрерывного темпового забега. Во время прохождения соревнований это может неправильно отразиться на поведении бегуна.

Горные АнП-тренировки

Анаэробный порог отлично повышается во время длительного забега в гору. Если вам повезло, и вы проживаете в местности с холмистым или горным рельефом, то АнП-тренировки можете выполнять, делая акцент на подъемах в высоту. Представьте, что вы располагаете маршрутом, имеющим длину в 15 км, где есть четыре подъема, каждый из которых около 800 метров и, например, один в 1,5 км. Преодолевая подъемы на своем уровне АнП, вы сможете набрать 20 минутный бег с такой же интенсивностью, какая затрачивалась на горные подъемы.

Основные адаптационные изменения

Постоянные тренировки позволяют существенно повысить собственное Оно способно увеличиваться только в первые годы тренировок, затем выходит на плато. Ели ваши тренировки в первые годы были достаточно интенсивными, то, скорее всего, возможности по увеличению МПК уже реализовались. Однако анаэробный порог способен расти, адаптационные изменения при высоком проценте МПК происходят в мышечных клетках.

Анаэробный порог повышается при результатах, когда снижается производство лактата, а также когда темпы его нейтрализации увеличиваются. К наиболее важным адаптационным изменениям, которые повышают анаэробный порог, относятся следующие факторы:

  • увеличивается размер и количество митохондрий;
  • увеличивается плотность капилляров;
  • повышается активность аэробных ферментов;
  • повышается концентрация гемоглобина.

Правильные тренировки под руководством знающих инструкторов помогают повысить анаэробный порог и достигнуть высоких результатов в спорте.