Классификация и маркировка сталей. Маркировка стали по российской, европейской и американской системам Что такое сталь классификация сталей

По структуре:

< С, тем >перлита, сталь прочнее.

По назначению:

1)

ВОПРОС 14. Классификация сталей по способу про-ва и качеству.

По способу пр-ва:

1) Кислый способ;

2) Основной способ – нераскислённая сталь кп, спокойная СП, если после марки нет букв, то это спокойная сталь, если не полностью раскислённая, то пс.

По качеству:

В зависимости от содержания вредных примесей: серы и фосфора-стали подразделяют на:

Стали обыкновенного качества , содержание до 0.06% серы и до 0,07% фосфора. Сталь обыкновенного качества подразделяется еще и по поставкам на 3 группы:

1. сталь группы А поставляется потребителям по механическим свойствам (такая сталь может иметь повышенное содержание серы или фосфора);

2. сталь группы Б - по химическому составу;

3. сталь группы В - с гарантированными механическими свойствами и химическим составом.

1. Качественные - до 0,035% серы и фосфора каждого отдельно.

2.Высококачественные - до 0.025% серы и фосфора.

3. Особовысококачественные, до 0,025% фосфора и до 0,015% серы.

Легированные стали. Легирующие элементы. Маркировка л/с.

Легированные стали широко применяют в тракторном и сельскохозяйственном машиностроении, в автомобильной промышленности, тяжелом и транспортном машиностроении в меньшей степени в станкостроении, инструментальной и других видах промышленности. Это стали применяют для тяжело нагруженных металлоконструкций.

Стали, в которых суммарное количество содержание легирующих элементов не превышает 2.5%, относятся к низколегированным, содержащие 2.5-10% - к легированным, и более 10% к высоколегированным (содержание железа более 45%).

Наиболее широкое применение в строительстве получили низколегированные стали, а в машиностроении - легированные стали.

Легированные конструкционные стали маркируют цифрами и буквами. Двухзначные цифры, приводимые в начале марки, указывают среднее содержание углерода в сотых долях процента, буквы справа от цифры обозначают легирующий элемент. Пример, сталь 12Х2Н4А содержит 0.12% С, 2% Cr, 4% Ni и относится к высококачественным, на что указывает в конце марки буква ІАІ.

Строительные низколегированные стали

Низко легированными называют стали, содержащие не более 0.22% С и сравнительно небольшое количество недефицитных легирующих элементов: до 1.8% Mn, до 1,2% Si, до 0,8% Cr и другие.

К этим сталям относятся стали 09Г2, 09ГС, 17ГС, 10Г2С1, 14Г2, 15ХСНД, 10ХНДП и многие другие. Стали в виде листов, сортового фасонного проката применяют в строительстве и машиностроении для сварных конструкций, в основном без дополнительной термической обработки. Низколегированные низкоуглеродистые стали хорошо свариваются.

Для изготовления труб большого диаметра применяют сталь 17ГС (s0.2=360МПа, sв=520МПа).

Для изготовления деталей, упрочняемых цементацией, применяют низкоуглеродистые (0.15-0.25% С) стали. Содержание легирующих элементов в сталях не должно быть слишком высоким, но должно обеспечить требуемую прокаливаемость поверхностного слоя и сердцевины.

Хромистые стали 15Х, 20Х предназначены для изготовления небольших изделий простой формы, цементируемых на глубину 1.0-1.5мм. Хромистые стали по сравнению с углеродистыми обладают более высокими прочностными свойствами при некоторой меньшей пластичности в сердцевине и лучшей прочности в цементируемом слое.

Производство стали.

В стали по сравнению с чугуном содержится меньше углерода, кремния, серы и фосфора. Для получения стали из чугуна необходимо снизить концентрацию веществ путем окислительной плавки.

В современной металлургической промышленности сталь выплавляют в основном в трех агрегатах: конвекторах, мартеновских и электрических печах.

Производство стали в конверторах.

Конвертор представляет собой сосуд грушевидной формы. Верхнюю часть называют козырьком или шлемом. Она имеет горловину, через которую жидкий чугун и сливают сталь и шлак. Средняя часть имеет цилиндрическую форму. В нижней части есть приставное днище, которое по мере износа заменяют новым. К днищу присоединена воздушная коробка, в которую поступает сжатый воздух.

Емкость современных конвекторов равна 60 – 100 т. и более, а давление воздушного дутья 0,3-1,35 Мн/м. Количество воздуха необходимого для переработки 1 т чугуна, составляет 350 кубометров.

Перед заливкой чугуна конвектор поворачивают до горизонтального положения, при котором отверстия фурм оказываются выше уровня залитого чугуна. Затем его медленно возвращают в вертикальное положение и одновременно подают дутье, не позволяющее металлу проникать через отверстия фурм в воздушную коробку. В процессе продувки воздухом жидкого чугуна выгорают кремний, марганец, углерод и частично железо.

При достижении необходимой концентрации углерода конвектор возвращают в горизонтальное положение и прекращают подачу воздуха. Готовый металл раскисляют и выливают в ковш.

Бессемеровский процесс. В конвертор заливают жидкий чугун с достаточно высоким содержанием кремния (до 2,25% и выше), марганца (0,6-0,9%), и минимальным количеством серы и фосфора.

По характеру происходящей реакции бессемеровский процесс можно разбить на три периода. Первый период начинается после пуска дутья в конвертор и продолжается 3-6 мин. Из горловины конвертора вместе с газами вылетают мелкие капли жидкого чугуна с образованием искр. В этот период окисляются кремний, марганец и частично железа по реакциям:

2Mn + O2 = 2MnO,

2Fe + O2 = 2FeO.

Образующаяся закись железа частично растворяется в жидком металле, способствуя дальнейшему окислению кремния и марганца. Эти реакции протекают с выделением большого количества тепла, что вызывает разогрев металла. Шлак получается кислым (40-50% SiO2).

Второй период начинается после почти полного выгорания кремния и марганца. Жидкий металл достаточно хорошо разогрет, что создаются благоприятные условия для окисления углерода по реакции C + FeO = Fe + CO, которая протекает с поглощением тепла. Горение углерода продолжается 8-10 мин и сопровождается некоторым понижением температуры жидкого металла. Образующаяся окись углерода сгорает на воздухе. Над горловиной конвектора появляется яркое пламя.

По мере снижения содержания углерода в металле пламя над горловиной уменьшается и начинается третий период. Он отличается от предыдущих периодов появлением над горловиной конвертора бурого дыма. Это показывает, что из чугуна почти полностью выгорели кремний, марганец и углерод и началось очень сильное окисление железа. Третий период продолжается не более 2 – 3 мин, после чего конвектор переворачивают в горизонтальное положение и в ванну вводят раскислители (ферромарганец, ферросилиций или алюминий) для понижения содержания кислорода в металле. В металле происходят реакции

FeO + Mn = MnO + Fe,

2FeO + Si = SiO2 + Fe,

3FeO + 2Al = Al2O3 + 3Fe.

Готовую сталь выливают из конвектора в ковш, а затем направляют на разливку.

Чтобы получить сталь с заранее заданным количеством углерода (например, 0,4 – 0,7% С), продувку металла прекращают в тот момент, когда из него углерод еще не выгорел, или можно допустить полное выгорание углерода, а затем добавить определенное количество чугуна или содержащих углерод определенное количество ферросплавов.

Большинство мартеновских печей отапливают смесью доменного, коксовального и генераторного газов. Также применяют и природный газ. Мартеновская печь, работающая на мазуте, имеет генераторы только для нагрева воздуха.

Шихтовые материалы (скрапы, чугун, флюсы) загружают в печь наполненной машиной через завалочные окна. Разогрев шихты, рас плавление металла и шлака в печи происходит в плавильном пространстве при контакте материалов с факелом раскаленных газов. Готовый металл выпускают из печи через отверстия, расположенные в самой низкой части подины. На время плавки выпускное отверстие забивают огнеупорной глиной.

Процесс плавки в мартеновских печах может быть кислым или основным. При кислом процессе огнеупорная кладка печи выполнена из динасов ого кирпича. Верхние части подины наваривают кварцевым песком и ремонтируют после каждой плавки. В процессе плавке получают кислый шлак с большим содержанием кремнезема (42-58%).

При основном процессе плавки подину и стенки печи выкладывают из магнезитового кирпича, а свод – из динасов ого или хромомагнезитового кирпича. Верхние слои подины наваривают магнезитовым или доломитовым порошком и ремонтируют после каждой плавки. В процессе плавки получают кислый шлак с большим содержанием 54 – 56% СаО.

Основной мартеновский процесс. Перед началом плавки определяют количество исходных материалов (чушковый чугун, стальной скрап, известняк, железная руда) и последовательность их загрузки в печь. При помощи заливочной машины мульда (специальная коробка) с шахтой вводится в плавильное пространство печи и переворачивается, в результате чего шихта высыпается на подину печи. Сначала загружают мелкий скрап, затем более крупный и на него кусковую известь (3 – 5 % массы металла). После прогрева загруженных материалов подают оставшийся стальной лом и предельный чугун двумя тремя порциями.

Для более интенсивного питания металлической ванны кислородом в шлак вводят железную руду. Кислород, растворенный в металле, окисляет кремний, марганец, фосфор и углерод по реакциям, рассмотренным выше.

К моменту рас плавления всей шихты значительная часть фосфора переходит в шлак, так как последний содержит достаточное количество закиси железа и извести. Во избежание обратного перехода фосфора в металл перед началом кипения ванны 40 – 50% первичного шлака из печи.

После скачивания первичного шлака в печь загружают известь для образования нового и более основного шлака. Тепловая нагрузка печи увеличивается, для того чтобы тугоплавкая известь быстрее перешла в шлак, а температура металлической ванны повысилась. Через некоторое время 15 – 20 мин в печь загружают железную руду, которая увеличивает содержание окислов железа в шлаке, и вызывает в металле реакцию окисления углерода

[C] + (FeO) = Coгаз.

Образуется окись углерода выделяется из металла в виде пузырьков, создавая впечатление его кипения, что способствует перемешиванию металла, выделение металлических включений и растворенных газов, а также равномерному распределению температуры по глубине ванны. Для хорошего кипения ванны необходимо подводить тепло, так как данная реакция сопровождается поглощением тепла. Продолжительность периода кипения ванны зависит от емкости печи и марки стали, и находится 1,25 – 2,5 ч и более.

Обычно железную руду добавляют в печь в первую периода кипения, называемого полировкой металла. Скорость окисления углерода в этот период в современных мартеновских печах большой емкости равна 0,3 – 0,4% в час.

В течение второй половины периода кипения железную руду в ванну не подают. Металл кипит мелкими пузырьками за счет накопленных в шлаке окислов железа. Скорость выгорания углерода в этот период равна 0,15 – 0,25% в час. В период кипения, следя за основностью и жидкотекучестью шлака.

Когда содержание углерода в металле окажется несколько ниже, чем требуется для готовой стали, начинается последняя стадия плавки – период доводки и раскисления металла. В печь вводят определенное количество кускового ферромарганца (12% Mn), а затем через 10 – 15 мин ферросилиций (12-16% Si). Марганец и кремний взаимодействуют с растворенным в металле кислородом, в результате чего реакция окисления углерода приостанавливается. Внешним признаком освобождения металла от кислорода является прекращение выделения пузырьков окиси углерода на поверхности шлака.

При основном процессе плавки происходит частичное удаление серы из металла по реакции

+ (CaO) = (CaO) + (FeO).

Для этого необходимы высокая температура и достаточная основность шлака.

Кислый мартеновский процесс. Этот процесс состоит из тех же периодов, что и основной. Шихту применяют очень чистую по фосфору и сере. Объясняется это тем, что образующийся кислый шлак не может задерживать указанные вредные примеси.

Печи обычно работают на твердой шихте. Количество скрапа равно 30 – 50% массы металлической шихты. В шихте допускается не более 0,5% Si. Железную руду в печь подавать нельзя, так как она может взаимодействовать с кремнеземом подины и разрушать ее в результате образования легкоплавкого соединения 2FeO*SiO2. Для получения первичного шлака в печь загружают некоторое количество кварцита или мартеновского шлака. После этого шихта нагревается печными газами; железо, кремний, марганец окисляются, их окислы сплавляются с флюсами и образуют кислый шлак, содержащий до 40 –50 % SiO2. В этом шлаке большая часть закиси железа находится в силикатной форме, что затрудняет его переход из шлака в металл. Кипение ванной при кислом процессе начинается позже, чем при основном, и происходит медленнее даже при хорошем нагреве металла. Кроме того, кислые шлаки имеют повышенную вязкость, что отрицательно сказывается на выгорании углерода.

Так как сталь выплавляется под слоем кислого шлака с низким содержанием свободной закиси железа, этот шлак защищает металл от насыщения кислородом. Перед выпуском из печи в стали содержится меньше растворенного кислорода, чем в стали, выплавленной при основном процессе.

Для интенсификации мартеновского процесса воздух обогащают кислородом, который подается в факел пламени. Это позволяет получать более высокие температуры в факеле пламени, увеличивать ее лучеиспускательную способность, уменьшать количество продуктов горения и благодаря этому увеличивать тепловую мощность печи.

Кислород можно вводить и в ванну печи. Введение кислорода в факел и в ванну печи сокращает периоды плавки и увеличивает производительность печи на 25-30%. Изготовление хромомагнезитовых сводов вместо динасовых позволяет увеличивать тепловую мощность печей, увеличить межремонтный период в 2-3 раза и повысить производительность на 6-10%.

Электроннолучевая плавка металлов. Для получения особо чистых металлов и сплавов используют электроннолучевую плавку. Плавка основана на использовании кинетической энергии свободных электронов, получивших ускорение в электрическом поле высокого напряжения. На металл направляется поток электронов, в результате чего он нагревается и плавится.

Электроннолучевая плавка имеет ряд преимуществ: электронные лучи позволяют получить высокую плотность энергии нагрева, регулировать скорость плавки в больших пределах, исключить загрязнение расплава материалом тигля и применять шихту в любом виде. Перегрев расплавленного металла в сочетании с малыми скоростями плавки и глубоким вакуумом создают эффективные условия для очистки металла от различных примесей.

Электрошлаковый переплав. Очень перспективным способом получения высококачественного металла является электрошлаковый переплав. Капли металла, образующиеся при переплаве заготовки, проходят через слой жидкого металла и рафинируются. При обработке металла шлаком и направленной кристаллизации слитка снизу вверх содержание серы в заготовке снижается на 30 – 50%, а содержание неметаллических включений – в два-три раза.

Вакуумирование стали. Для получения высококачественной стали, широко применяется вакуумная плавка. В слитке содержатся газы и некоторое количество неметаллических включений. Их можно значительно уменьшить, если воспользоваться вакуумированием стали при ее выплавке и разливке. При этом способе жидкий металл подвергается выдержке в закрытой камере, из которой удаляют воздух и другие газы. Вакуумирование стали производится в ковше перед заливкой по изложницам. Лучшие результаты получаются тогда, когда сталь после вакуумирования в ковше разливают по изложницам так же в вакууме. Выплавка металла в вакууме осуществляется в закрытых индукционных печах.

Рафирование стали в ковше жидкими синтетическими шлаками. Сущность этого метода состоит в том, что очистка стали от серы, кислорода и неметаллических включений производится при интенсивном перемешивании стали в ковше с предварительно слитым в него шлаком, приготовленном в специальной шлакоплавильной печи. Сталь после обработки жидкими шлаками обладает высокими механическими свойствами. За счет сокращения периода рафинирования в дуговых печах, производительность которых может быть увеличена на 10 – 15%. Мартеновская печь, обработанная синтетическими шлаками, по качеству близка к качеству стали, выплавляемой в электрических печах.

Сталь (от нем. Stahl) - сплав (твёрдый раствор) железа с углеродом (и другими элементами), характеризующийся эвтектоидным превращением. Содержание углерода в стали не более 2,14 %. Углерод придаёт сплавам железа прочность и твёрдость, снижая пластичность и вязкость.

Учитывая, что в сталь могут быть добавлены легирующие элементы, сталью называется содержащий не менее 45 % железа сплав железа с углеродом и легирующими элементами (легированная, высоколегированная сталь).

Применения

Стали с высокими упругими свойствами находят широкое применение в машино- и приборостроении. В машиностроении их используют для изготовления рессор, амортизаторов, силовых пружин различного назначения, в приборостроении - для многочисленных упругих элементов: мембран, пружин, пластин реле, сильфонов, растяжек, подвесок.

Пружины, рессоры машин и упругие элементы приборов характеризуются многообразием форм, размеров, различными условиями работы. Особенность их работы состоит в том, что при больших статических, циклических или ударных нагрузках в них не допускается остаточная деформация. В связи с этим все пружинные сплавы кроме механических свойств, характерных для всех конструкционных материалов (прочности, пластичности, вязкости, выносливости), должны обладать высоким сопротивлением малым пластическим деформациям. В условиях кратковременного статического нагружения сопротивление малым пластическим деформациям характеризуется пределом упругости, при длительном статическом или циклическом нагружении - релаксационной стойкостью.

Классификация

Стали делятся на конструкционные и инструментальные . Разновидностью инструментальной является быстрорежущая сталь.

По химическому составу стали делятся на углеродистые и легированные; в том числе по содержанию углерода - на низкоуглеродистые (до 0,25 % С), среднеуглеродистые (0,3-0,55 % С) и высокоуглеродистые (0,6-2 % С); легированные стали по содержанию легирующих элементов делятся на низколегированные - до 4 % легирующих элементов, среднелегированные - до 11 % легирующих элементов и высоколегированные - свыше 11 % легирующих элементов.

Стали, в зависимости от способа их получения, содержат разное количество неметаллических включений. Содержание примесей лежит в основе классификации сталей по качеству: обыкновенного качества, качественные, высококачественные и особо высококачественные.

Характеристики стали

Плотность: 7700-7900 кг/м³,

Удельный вес: 75500-77500 Н/м³ (7700-7900 кгс/м³ в системе МКГСС),

Удельная теплоемкость при 20 °C: 462 Дж/(кг·°C) (110 кал/(кг·°C)),

Температура плавления: 1450-1520 °C,

Удельная теплота плавления: 84 кДж/кг (20 ккал/кг, 23 Вт·ч/кг),

Коэффициент теплопроводности при температуре 100 °C. Хромоникельвольфрамовая сталь 15,5 Вт/(м·К)

Хромистая сталь 22,4 Вт/(м·К)

Молибденовая сталь 41,9 Вт/(м·К)

Углеродистая сталь (марка 30) 50,2 Вт/(м·К)

Углеродистая сталь (марка 15) 54,4 Вт/(м·К)

Коэффициент линейного теплового расширения при температуре около 20 °C: сталь Ст3 (марка 20) 1/°C

сталь нержавеющая 1/°C

Сталь рельсовая 690-785 МПа

Производство стали

Суть процесса переработки чугуна на сталь состоит в уменьшении до нужной концентрации содержания углерода и вредных примесей - фосфора и серы, которые делают сталь хрупкой и ломкой. В зависимости от способа окисления углерода существуют различные способы переработки чугуна на сталь: конверторный, мартеновский и электротермический.

Бессемеровский способ

Бессемеровский способом перерабатывают чугуны, содержащие мало фосфора и серы и богатые кремнием (не менее 2 %). При продувке кислорода сначала окисляется кремний с выделением значительного количества тепла. Вследствие этого начальная температура чугуна примерно с 1300° C быстро поднимается до 1500-1600° С. Выгорания 1 % Si обусловливает повышение температуры на 200° C. Около 1500° C начинается интенсивное выгорание углерода. Вместе с ним интенсивно окисляется и железо, особенно к концу выгорания кремния и углерода:

Si + O2 = SiO2

2C + O2 = 2CO

2Fe + O2 = 2FeO

Образующийся монооксид железа FeO, хорошо растворяется в расплавленном чугуне и частично переходит в сталь, а частично реагирует с SiO2 и в виде силиката железа FeSiO3 переходит в шлак:

FeO + SiO2 = FeSiO3

Фосфор полностью переходит из чугуна в сталь, так P2O5 при избытке SiO2 не может реагировать с основными оксидами, поскольку SiO2 с последними реагирует более энергично. Поэтому фосфористые чугуны перерабатывать в сталь этим способом нельзя.

Все процессы в конверторе идут быстро - в течение 10-20 минут, так как кислород воздуха, продуваемый через чугун, реагирует с соответствующими веществами сразу по всему объёму металла. При продувке воздухом, обогащенным кислородом, процессы ускоряются. Монооксид углерода CO, образующийся при выгорании углерода, пробулькивает вверх, сгорает там, образуя над горловиной конвертора факел светлого пламени, который по мере выгорания углерода уменьшается, а затем совсем исчезает, что и служит признаком окончания процесса. Получаемая при этом сталь содержит значительные количества растворенного монооксида железа FeO, который сильно снижает качество стали. Поэтому перед разливкой сталь надо обязательно разкислить с помощью различных разкислителей - ферросилиция, фероманганца или алюминия:

2FeO + Si = 2Fe + SiO2

FeO + Mn = Fe + MnO

3FeO + 2Al = 3Fe + Al2O3

Монооксид марганца MnO как основной оксид реагирует с SiO2 и образует силикат марганца MnSiO3, который переходит в шлак. Оксид алюминия как нерастворимое при этих условиях вещество тоже всплывает наверх и переходит в шлак. Несмотря на простоту и высокую продуктивность, бессемеровский способ теперь не достаточно распространен, поскольку он имеет ряд существенных недостатков. Так, чугун для бессемеровского способа должен быть с наименьшим содержанием фосфора и серы, что далеко не всегда возможно. При этом способе происходит очень большое выгорания металла, и выход стали составляет лишь 90 % от массы чугуна, а также расходуется много разкислителей. Серьезным недостатком является невозможность регулирования химического состава стали.

Бессемеровская сталь содержит обычно менее 0,2 % углерода и используется как техническое железо для производства проволоки, болтов, кровельного железа и т. п..

Томасовский способ

Томасовские способом перерабатывают чугун с большим содержанием фосфора (до 2 % и более). Основное отличие этого способа от бессемеровского заключается в том, что футеровку конвертера делают из оксидов магния и кальция. Кроме того, к чугуну добавляют ещё до 15 % CaO. Вследствие этого шлакообразующие вещества содержат значительный избыток оксидов с основными свойствами.

В этих условиях фосфатный ангидрид P2O5, который возникает при сгорании фосфора, взаимодействует с избытком CaO с образованием фосфата кальция, переходит в шлак:

4P + 5O2 = 2P2O5

P2O5 + 3CaO = Ca3(PO4)2

Реакция горения фосфора является одним из главных источников тепла при этом способе. При сгорании 1 % фосфора температура конвертора поднимается на 150 ° C. Сера выделяется в шлак в виде нерастворимого в расплавленной стали сульфида кальция CaS, который образуется в результате взаимодействия растворимого FeS с CaO по реакции:

FeS + CaO = FeO + CaS

Все последние процессы происходят так же, как и при бессемеровский способе. Недостатки Томасовского способа такие же, как и бессемеровского. Томасовские сталь также малоуглеродная и используется как техническое железо для производства проволоки, кровельного железа и т. п.

Мартеновская печь

Мартеновский способ отличается от конверторного тем, что выжигание избытка углерода в чугуне происходит не только за счет кислорода воздуха, но и кислорода оксидов железа, которые добавляются в виде железной руды и ржавого железного лома.

Мартеновская печь состоит из плавильной ванны, перекрытой сводом из огнеупорного кирпича, и особых камер регенераторов для предварительного подогрева воздуха и горючего газа. Регенераторы заполнены насадкой из огнеупорного кирпича. Когда первые два регенераторы нагреваются печными газами, горючий газ и воздух вдуваются в печь через раскаленные третий и четвёртый регенераторы. Через некоторое время, когда первые два регенератора нагреваются, поток газов направляют в противоположном направлении и т. д.

Плавильные ванны мощных мартеновских печей имеют длину до 16 м, ширину до 6 м и высоту более 1 м. Вместимость таких ванн достигает 500 т стали. В плавильную ванну загружают железный лом и железную руду. К шихте добавляют также известняк как флюс. Температура печи поддерживается при 1600-1650° C и выше. Выгорания углерода и примесей чугуна в первый период плавки происходит главным образом за счет избытка кислорода в горючей смеси с теми же реакциями, что и в конверторе, а когда над расплавленным чугуном образуется слой шлака - за счет оксидов железа

4Fe2O3 + 6Si = 8Fe + 6SiO2

2Fe2O3 + 6Mn = 4Fe + 6MnO

Fe2O3 + 3C = 2Fe + 3CO

5Fe2O3 + 2P = 10FeO + P2O5

FeO + С = Fe + CO

Вследствие взаимодействия основных и кислотных оксидов образуются силикаты и фосфаты, которые переходят в шлак. Сера тоже переходит в шлак в виде сульфида кальция:

MnO + SiO2 = MnSiO3

3CaO + P2O5 = Ca3(PO4)2

FeS + CaO = FeO + CaS

Мартеновские печи, как и конверторы, работают периодически. После разливки стали печь снова загружают шихтой и т. д. Процесс переработки чугуна в сталь в мартенах происходит относительно медленно в течение 6-7 часов. В отличие от конвертора в мартенах можно легко регулировать химический состав стали, добавляя к чугуну железный лом и руду в той или иной пропорции. Перед окончанием плавки нагрева печи прекращают, сливают шлак, а затем добавляют розкисникы. В мартенах можно получать и легированную сталь. Для этого в конце плавки добавляют к стали соответствующие металлы или сплавы.

Электротермический способ

Электротермический способ имеет перед мартеновским и особенно конверторным целый ряд преимуществ. Этот способ позволяет получать сталь очень высокого качества и точно регулировать её химический состав. Доступ воздуха в электропечь незначительный, поэтому значительно меньше образуется монооксида железа FeO, загрязняющего сталь и снижающего её свойства. Температура в электропечи - не ниже 2000° C. Это позволяет проводить плавку стали на сильно основных шлаках (которые трудно плавятся), при которых полнее удаляется фосфор и сера. Кроме того, благодаря очень высокой температуре в электропечах можно легировать сталь тугоплавкими металлами - молибденом и вольфрамом. Но в электропечах расходуется очень много электроэнергии - до 800 кВт / ч на 1 т стали. Поэтому этот способ применяют только для получения высококачественной спецстали.

Электропечи бывают разной емкости - от 0,5 до 180 т. Футеровку печи делают обычно основной (с CaO и MgO). Состав шихты может быть разный. Иногда она состоит на 90 % из железного лома и на 10 % из чугуна, иногда в ней преобладает чугун с добавками в определенной пропорции железной руды и железного лома. К шихте добавляют также известняк или известь как флюс. Химические процессы при выплавке стали в электропечах те же, что и в мартенах.

Свойства стали

Физические свойства

плотность ρ ≈ 7,86 г / см3; коэффициент линейного теплового расширения α = 11 … 13 · 10−6 K−1;

коэффициент теплопроводности k = 58 Вт / (м · K);

модуль Юнга E = 210 ГПа;

модуль сдвига G = 80 ГПа;

коэффициент Пуассона ν = 0,28 … 0,30;

удельное сопротивление (20 ° C , 0,37-0,42 % углерода) = 1,71 · 10−7 Ом · м

Перлит - эвтектоидная смесь двух фаз - феррита и цементита, содержит 1/8 цементита и поэтому имеет повышенную прочность и твердость по сравнению с ферритом. Поэтому доэвтектоидные стали гораздо более пластичны, чем заэвтектоидные.

Стали содержат до 2,14 % углерода. Фундаментом науки о стали, как сплава железа с углеродом является диаграмма состояния сплавов железо-углерод - графическое отображение фазового состояния сплавов железа с углеродом в зависимости от их химического состава и температуры. Для улучшения механических и других характеристик сталей применяют легирование. Главная цель легирования подавляющего большинства сталей - повышение прочности за счет растворения легирующих элементов в феррите и аустените, образования карбидов и увеличения прокаливаемости. Кроме того, легирующие элементы могут повышать устойчивость против коррозии, термостойкость, жаропрочность и др. Такие элементы как хром, марганец, молибден, вольфрам, ванадий, титан образуют карбиды, а никель, кремний, медь, алюминий карбидов не образуют. Кроме того, легирующие элементы уменьшают критическую скорость охлаждения при закалке, что необходимо учитывать при назначении режимов закалки (температуры нагрева и среды для охлаждения). При значительном количестве легирующих элементов может существенно измениться структура, что приводит к образованию новых структурных классов по сравнению с углеродистыми сталями.

Обработка стали

Виды термообработки

Сталь в исходном состоянии достаточно пластична, её можно обрабатывать путем деформирования: ковать, вальцеваты, штамповать. Характерной особенностью стали является её способность существенно изменять свои механические свойства после термической обработки сущность которой заключается в изменении структуры стали при нагреве, выдержке и охлаждении, согласно специальному режиму. Различают следующие виды термической обработки:

отжиг;

нормализация;

закалки;

Отпуск.

Чем богаче сталь на углерод, тем она тверже после термической обработки. Сталь с содержанием углерода до 0,3 % (техническое железо) практически закаливанию не поддается.

Цементация (C) увеличивает твердость поверхности мягкой стали из-за увеличения концентрации углерода в поверхностных слоях.

ВОПРОС 13. Классификация сталей по структуре и назначению.

По структуре:

1) доэвтектоидные (углерод 0-0,8) в этой структуре наход. Феррит и перлит. Чем < С, тем >перлита, сталь прочнее.

2) эвтектоидные (С=0,8). У них в структуре один перлит, стали прочные.

3) заявтектоидные (С 0,8-2,14). У них в структуре нах П и Ц втор, стали очень твёрдые, менее вязки и пластичны.

По назначению:

1) строительные (С 0,8-2,14) эти стали достаточно прочные, хорошо прокатываются, свариваются.

2) Машиностроительные (С 0,3-0,8). У них больше перлита, поэтому они более ТВ, чем строительные, хотя сокр вязкость и пластичность.

3) Инструментальные (С от 0,7-1,3). Это высокоуглер стали, очень ТВ., не пластичные.

4) Литейные стали – сплавы идут на стальные отливки. С=0,035. малоуглеродистые стали.

Сталь. Виды и марки стали. Их применение.

Сталь - это сплав железа и углерода с другими элементами, содержание углерода в нём не более 2,14%.

Наиболее общая характеристика - по химическому составу сталь различают:

    углеродистую сталь (Fe – железо, C – углерод, Mn – марганец, Si - кремний, S – сера, P – фосфор). По содержанию углерода делится на низкоуглеродистую, среднеуглеродистую и высокоуглеродистую. Углеродистая сталь предназначена для статически нагруженного инструмента.

По способу производства и содержанию примесей сталь различается:

        сталь обыкновенного качества (углерода менее 0,6%) - соответствует ГОСТ 14637, ГОСТ 380-94. Ст0, Ст1, Ст2, Ст3, Ст4, Ст5,Ст6. Буквы «Ст» обозначают сталь обыкновенного качества, цифры указывают на номер маркировки в зависимости от механических свойств. Является наиболее дешёвой сталью, но уступает по другим качествам.

        качественная сталь (углеродистая или легированная) - ГОСТ 1577, содержание углерода обозначается в сотых долях % - 08, 10, 25, 40, дополнительно может указываться степень раскисления и характер затвердевания. Качественная углеродистая сталь обладает высокой пластичностью и повышенной свариваемостью.

        Низкоуглеродистые качественные конструкционные стали характеризуются невысокой прочностью и высокой пластичностью. Из листового проката стали 08, 10, 08кп изготавливают детали для холодной штамповки. Из сталей 15, 20 делают болты, винты, гайки, оси, крюки,шпильки и другие детали неответственного назначения.

Среднеуглеродистые качественные стали (ст 30, 35, 40, 45, 50, 55) используют после нормализации и поверхностной закалки для изготовления таких деталей, которые обладают высокой прочностью и вязкостью сердцевины (оси, винты, втулки и т. д.)

Стали 60 - стали 85 обладают высокой прочностью, износостойкостью, упругими свойствами. Из них изготавливают крановые колёса, прокатные валки, клапаны компрессоров, пружины, рессоры и т.д.

        высококачественная - сложный химический состав с пониженным содержанием фосфора и серы - по ГОСТу 19281.

Также сталь делится по применению :

а) строительная сталь - углеродистая обыкновенного качества. Обладает отличной свариваемостью. Цифра обозначает условный номер состава стали по ГОСТу. Чем больше условный номер, тем больше содержание углерода, тем выше прочность стали и ниже пластичность.

Ст0-3 - для вторичных элементов конструкций и неответственных деталей (настилы, перила, подкладка,шайбы)

Ст3 используют для несущих и ненесущих элементов сварных и несварных конструкций и деталей, которые работают при положительных температурах. ГОСТ 380-88.

Стандартом качества предусмотрена сталь с повышенным количеством марганца (Ст3Гсп/пс, ст5Гсп/пс).

б) конструкционная сталь - ГОСТ 1050

Углеродистые качественные конструкционные стали используются в машиностроении, для сварных, болтовых конструкций, для кровельных работ, для изготовления рельсов, железнодорожных колёс, валов, шестерен и других деталей грузоподъёмников.Ц ифры в маркировке означают содержание углерода в десятых долях процента.

Ст20 - малонагруженные детали, такие как валики, копиры, упоры,

Ст35 - испытывающие небольшие напряжения (оси, тяги, рычаги, диски, траверсы, валы),

Ст45 (ст40Х) - требующие повышенной прочности (валы, муфты, оси, зубчатые рейки)

Конструкционные легированные стали используют для гусениц тракторов, изготовления пружин, рессор, осей, валов, автомобильных деталей, деталей турбин и др.

в) инструментальная сталь - применяется для режущего инструмента, быстрорежущая сталь для холодного и горячего деформирования материла, для измерительных инструментов, на производство молотков, долот, стамесок, резцов, свёрлов, напильников, бритв, рашпилей.

У7, У8А (цифра- десятые доли процента по содержанию углерода). Углеродистые стали выпускают качественными и высококачественными. Буква «А» означает высококачественную углеродистую инструментальную сталь.

г) легированная сталь - универсальная сталь, содержащая специальную примесь. Содержание кремния более 0,5%, марганца более 1%. ГОСТ 19281-89. Если содержание легирующего элемента превышает 1 - 1,5%, то оно указывается цифрой после соответствующей буквы.

    низколегированная сталь - где легирующих элементов до 2,5% (09Г2С, 10ХСНД, 18ХГТ). Низколегированную сталь можно использовать в условиях крайнего севера, от -70 град С. Низколегированную сталь отличает большая прочность за счёт более высокого предела текучести,что важно для ответственных конструкций.

    среднелегированная (2,5 -10%),

    высоколегированная (от 10 до 50%)

Сталь 09Г2С применяется для паровых котлов, аппаратов и ёмкостей, работающих под давлением и температурой от минус 70, до плюс 450град; её используют для ответственных листовых сварных конструкций в химическом и нефтяном машиностроении, судостроении.

Сталь 10ХСНД используют для сварных конструкций химического машиностроения, фасонных профилей в сдостроении, вагоностроении.

18ХГТ применяют для деталей, работающих на больших скоростях при высоком давлении и ударных нагрузках.

д) сталь особого назначения - сталь с особыми физическими свойствами. Она применяется в электротехничсеской промышленности и точном судостроении.

На свариваемость стали влияет степень её раскисления. По степени раскисления сталь классифицируется:

    спокойная сталь (ст3сп) - полностью раскисляется с минимальным содержанием шлаком и неметаллических примесей,

    полуспокойная сталь (ст3пс) - по характеристикам качества схожа со спокойной сталью,

    кипящая сталь (08кп) - неокисленная сталь с высоким содержанием неметаллических примесей. ГОСТ 1577.

В зависимости от нормируемых характеристик , сталь подразделяют на категории: 1, 2, 3, 4, 5. Категории обозначают химический состав, механические свойства при растяжении, ударную вязкость)

Марки стали

Марка стали С245 - Ст3пс5

Марка стали С255 - Ст3сп5

Марка стали С235 - Ст3кп2

Марка стали С345 - 09Г2С



Углеродистые и легированные стали.

Классификация и маркировка сталей.

Сталями принято называть сплавы железа с углеродом, содержание до 2,14% углерода. Кроме того, в состав сплава обычно входят марганец, кремний, сера и фосфор; некоторые элементы могут быть введены для улучшения физико-химических свойств специально (легирующие элементы).

Стали, классифицируют по самым различным признакам. Мы рассмотрим следующие:

Химический состав.

В зависимости от химического состава различают стали углеродистые (ГОСТ 380-71, ГОСТ 1050-75) и легированные (ГОСТ 4543-71, ГОСТ 5632-72, ГОСТ 14959-79). В свою очередь углеродистые стали могут быть:

    малоуглеродистыми, т. е. содержащими углерода менее 0,25%;

    среднеуглеродистыми, содержание углерода составляет 0,25-0,60%

    высокоуглеродистыми, в которых концентрация углерода превышает 0,60% Легированные стали подразделяют на:

    низколегированные содержание легирующих элементов до 2,5%

    среднелегированные, в их состав входят от 2,5 до 10% легирующих элементов;

    высоколегированные, которые содержат свыше 10% легирующих элементов.

Назначение .

По назначению стали бывают:

    Конструкционные, предназначенные для изготовления строительных и машиностроительных изделий.

    Инструментальные, из которых изготовляют режущий, мерительный, штамповый и прочие инструменты. Эти стали содержат более 0,65% углерода.

    С особыми физическими свойствами, например, с определенными магнитными характеристиками или малым коэффициентом линейного расширения: электротехническая сталь, суперинвар.

    С особыми химическими свойствами, например, нержавеющие, жаростойкие или жаропрочные стали.

Качество.

В зависимости от содержания вредных примесей: серы и фосфора-стали подразделяют на:

    Стали обыкновенного качества , содержание до 0.06% серы и до 0,07% фосфора.

    Качественные - до 0,035% серы и фосфора каждого отдельно.

    Высококачественные - до 0.025% серы и фосфора.

    Особовысококачественные , до 0,025% фосфора и до 0,015% серы.

Степень раскисления.

По степени удаления кислорода из стали, т. е. По степени её раскисления, существуют:

    спокойные стали , т. е., полностью раскисленные; такие стали обозначаются буквами “сп” в конце марки (иногда буквы опускаются);

    кипящие стали - слабо раскисленные; маркируются буквами "кп";

    полу спокойные стали, занимающие промежуточное положение между двумя предыдущими; обозначаются буквами "пс".

Сталь обыкновенного качества подразделяется еще и по поставкам на 3 группы:

    сталь группы А поставляется потребителям по механическим свойствам (такая сталь может иметь повышенное содержание серы или фосфора);

    сталь группы Б - по химическому составу;

    сталь группы В - с гарантированными механическими свойствами и химическим составом.

В зависимости от нормируемых показателей (предел прочности σ, относительное удлинение δ%, предел текучести δ т, изгиб в холодном состоянии) сталь каждой группы делится на категории , которые обозначаются арабскими цифрами.

Стали обыкновенного качества обозначают буквами "Ст" и условным номером марки (от 0 до 6) в зависимости от химического состава и механических свойств. Чем выше содержание углерода и прочностные свойства стали, тем больше её номер. Буква "Г" после номера марки указывает на повышенное содержание марганца в стали. Перед маркой указывают группу стали, причем группа "А" в обозначении марки стали не ставится. Для указания категории стали к обозначению марки добавляют номер в конце соответствующий категории, первую категорию обычно не указывают.

Например:

Ст1кп2 - углеродистая сталь обыкновенного качества, кипящая, № марки 1, второй категории, поставляется потребителям по механическим свойствам (группа А);

ВСт5Г - углеродистая сталь обыкновенного качества с повышенным содержанием марганца, спокойная, № марки 5, первой категории с гарантированными механическими свойствами и химическим составом (группа В);

Вст0 - углеродистая сталь обыкновенного качества, номер марки 0, группы Б, первой категории (стали марок Ст0 и Бст0 по степени раскисления не разделяют).

Качественные стали маркируют следующим образом:

1 в начале марки указывают содержание углерода цифрой, соответствующей его средней концентрации;

а) в сотых долях процента для сталей, содержащих до 0,65% углерода;

05кп – сталь углеродистая качественная, кипящая, содержит 0,05% С;

60 – сталь углеродистая качественная, спокойная, содержит 0,60% С;

б) в десятых долях процента для индустриальных сталей, которые дополнительно снабжаются буквой "У":

У7 – углеродистая инструментальная, качественная сталь, содержащая 0,7% С, спокойная (все инструментальные стали хорошо раскислены);

У12 - углеродистая инструментальная, качественная сталь, спокойная содержит 1,2% С;

2 легирующие элементы, входящие в состав стали, обозначают русскими буквами:

А – азот К – кобальт Т – титан Б – ниобий М – молибден Ф- ванадий

В – вольфрам Н – никель Х – хром Г – марганец

П – фосфор Ц – цирконий Д – медь Р – бор Ю – алюминий

Е – селен С – кремний Ч – редкоземельные металлы

Если после буквы, обозначающей легирующий элемент, стоит цифра, то она указывает содержание этого элемента в процентах. Если цифры нет, то сталь содержит 0,8-1,5% легирующего элемента, за исключением молибдена и ванадия (содержание которых в солях обычно до 0,2-0,3%), а также бора (в стали с буквой Р его должно быть не менее 0,0010%).

14Г2 – низко легированная качественная сталь, спокойная, содержит приблизительно 14% углерода и до 2,0% марганца.

03Х16Н15М3Б - высоко легированная качественная сталь, спокойная содержит 0,03% C, 16,0% Cr, 15,0% Ni, до З,0% Мо, до 1,0% Nb.

Высококачественные и особовысококачественные стали.

Маркируют, так же как и качественные, но в конце марки высококачественной стали ставят букву А, (эта буква в середине марочного обозначения указывает на наличие азота, специально введённого в сталь), а после марки особовысококачественной - через тире букву "Ш".

Например:

У8А - углеродистая инструментальная высоко качественная сталь, содержащая 0,8% углерода;

30ХГС-III – особовысококачественная среднелегированная сталь, содержащая 0,30% углерода и от 0,8 до 1,5% хрома, марганца и кремния каждого.

Отдельные группы сталей обозначают несколько иначе.

Шарикоподшипниковые стали маркируют буквами "ШХ", после которых указывают содержание хрома в десятых долях процента:

ШХ6 - шарикоподшипниковая сталь, содержащая 0,6% хрома;

ШХ15ГС - шарикоподшипниковая сталь, содержащая 1,5% хрома и от 0,8 до 1,5% марганца и кремния.

Быстрорежущие стали (сложнолегированные) обозначают буквой "Р", следующая за ней цифра указывает на процентное содержание в ней вольфрама:

Р18-быстрорежущая сталь, содержащая 18,0% вольфрама;

Р6М5К5-быстрорежущая сталь, содержащая 6,0% вольфрама 5,0% молибдена 5,0% кобальта.

Автоматные стали обозначают буквой "А" и цифрой, указывающей среднее содержание углерода в сотых долях процента:

А12 - автоматная сталь, содержащая 0,12% углерода (все автоматные стали имеют повышенное содержание серы и фосфора);

А40Г - автоматная сталь с 0,40% углерода и повышенным до 1,5% содержанием марганца.

Классификация и маркировка чугунов.

Чугунами называют сплавы железа с углеродом, содержащие более 2,14% углерода. Они содержат те же примеси, что и сталь, но в большем количестве. В зависимости от состояния углерода в чугуне, различают:

Белый чугун, в котором весь углерод находится в связанном состоянии в виде карбида, и чугун, в котором углерод в значительной степени или полностью находится в свободном состоянии в виде графита, что определяет прочностные свойства сплава, чугуны подразделяют на:

    серые - пластинчатая или червеобразная форма графита;

    высокопрочные - шаровидный графит;

    ковкие - хлопьевидный графит. Чугуны маркируют двумя буквами и двумя цифрами, соответствующими минимальному значению временного сопротивления δ в при растяжении в МПа -10 .

Серый чугун обозначают буквами "СЧ" (ГОСТ 1412-85), высокопрочный - "ВЧ" (ГОСТ 7293-85), ковкий - "КЧ" (ГОСТ 1215-85).

СЧ10 - серый чугун с пределом прочности при растяжении 100 МПа;

ВЧ70 - высокопрочный чугун с сигма временным при растяжении 700 МПа;

КЧ35 - ковкий чугун с δ в растяжением примерно 350 МПа.

Для работы в узлах трения со смазкой применяют отливки из антифрикционного чугуна АЧС-1, АЧС-6, АЧВ-2, АЧК-2 и др., что расшифровывается следующим образом: АЧ - антифрикционный чугун:

С - серый, В - высокопрочный, К - ковкий. А цифры обозначают порядковый номер сплава согласно ГОСТу 1585-79.

Сталь - распространенный машиностроительный материал.

Под сталью понимают сплавы железа с углеродом, содержащие от 0,02 до 2,14 % С. Помимо углерода в сталях присутствуют постоянные примеси Mn , Si, S , Р и др., которые оказывают влияние на ее свойства. Стали классифицируют по химическому составу, по качеству и по применению.

По химическому составу различают углеродистые и легированные стали. По содержанию углерода те и другие подразделяют на низко (менее 0,25% С), средне - (0,30 - 0,70% С) и высокоуглеродистые (более 0,7% С). В зависимости от суммарного содержания легирующих элементов различают низко (менее 5 %), средне - (5,0 -10,0%) и высоколегированные (более 10,0%) стали.

По качеству различают стали обыкновенного качества, качественные, высококачественные и особовысококачественные. Эта классификация определяет условия металлургического производства сталей и прежде всего содержание в них вредных примесей.

К сталям обыкновенного качества относят углеродистые, содержащие до 0,6% - С, до 0,060% - S и до 0,070% - Р. Из них изготавливают горячекатаный сортовой прокат: балки, прутки, швеллеры, уголки, трубы и т.п., а также холоднокатаную листовую сталь.

В соответствии с ГОСТ 380-88 выпускаются три группы (А, Б и В) сталей обыкновенного качества.

В группу А входят стали, поставляемые по механическим свойствам без уточнения их химического состава. Стали этой группы обозначаются буквами Ст (сталь) и цифрами 0, 1, 2...6.

Чем больше число, тем выше содержание углерода и прочность (σ в, МПа) и ниже пластичность (δ,%). Эти стали используют в состоянии поставки без последующей горячей обработки давлением или термической обработки. Примерами стали этой группы могут служить марки: Ст0, Ст1, Ст4.

Группа Б - стали, поставляемые с гарантированным химическим составом.. В обозначение марки стали этой группы впереди ставится буква Б, например, БСт0, БСт1 и т.д.

Группа В представляет стали, поставляемые с гарантированным химическим составом и механическими свойствами. В обозначение марки стали этой группы вводится группа В, например, ВСт1, ВСт5. Химический состав стали такой же, как у соответствующей марки группы Б, а механические свойства такие же, как у группы А.

Стали групп Б и В применяют в случаях, когда сталь необходимо подвергать горячей деформации или упрочнять термической обработкой.

Стали обыкновенного качества распределяются, кроме того, на спокойные, полуспокойные и кипящие.

Спокойные стали раскисляют в процессе плавки марганцем, кремнием, алюминием, титаном. В них содержится минимальное количество кислорода и различных окислов. Содержание кремния обычно 0,15 - 0,35 % . Спокойные стали обозначают буквами "сп", например, Ст3сп, БСт5сп, ВСт4сп и т.д.

Кипящие стали раскисляют в процессе плавки только марганцем, содержание кремния не более 0,1% (следы). Перед разливкой в них содержится повышенное количество кислорода, который взаимодействуя с углеродом образует пузырьки СО. Выделение пузырьков из металла создает впечатление, что он кипит. Часть их остается в металле, образуя его сотовидное строение. Кипящие стали обозначаются дополнительно буквами "кп", например, БСтЗкп, Ст2кп, ВСт4кп.

Полуспокойные стали по степени раскисления занимают промежуточное положение между спокойными и кипящими и содержат до 0,17% кремния (предварительно раскисляются марганцем). Полуспокойные стали обозначаются дополнительно буквами "пс", например, Ст1пс, Ст2пс, ВСт5пс и т.д. Благодаря большей однородности по сравнению с кипящей сталью полуспокойная сталь имеет свойства, близкие к свойствам спокойной стали. Спокойная сталь применяется для производства проката и фасонных отливок; полуспокойная и кипящая - для проката.

Качественные стали. По химическому составу это углеродистые легированные стали, содержание серы и фосфора в которых не должно превышать 0,035% каждого. Колебания в содержании углерода пределах марки не должно превышать 0,08 %.

Высококачественные стали. Это углеродистые и легированные стали, выплавляемые преимущественно в электрических и кислых мартеновских печах. Содержание серы и фосфора не более 0,025% каждого, а колебания углерода в пределах марки не более 0,07%.

Стали особовысококачественные - это легированные стали, выплавляемые в электрических печах с электрошлаковым переплавом содержат серу и фосфор не более 0,015% каждого.

По применению различают следующие классы сталей: строительные, машиностроительные общего назначения, машиностроительные специального назначения, инструментальные, с особыми химическими и физическими свойствами. В настоящей работе ограничимся рассмотрением строительных, машиностроительных общего назначения и инструментальных сталей, а остальные будут изучаться курсе "Материаловедение".

Маркировка строительных и машиностроительных сталей общего назначения. Маркировка углеродистых сталей обыкновенного качества была рассмотрена выше.

Качественные углеродистые стали по ГОСТ 1050-88 маркируются цифрами 08, 10, 15, 20... 85, которые указывают среднее содержание углерода в сотых долях процента. В зависимости от степени раскисления эти стали могут быть спокойными или кипящими (08 и 08кп, 10 и 10кп).

Легированные стали маркируются цифрами и буквами, например, 15Х; 45ХФ; 18ХГТ; 12ХН3А; 20Х2Н4А; 14Г2 25Г2С и т.д. Двузначные цифры в начале марки указывают среднее содержание углерода в сотых долях процента; буквы справа от цифры обозначают легирующий элемент: А - азот, Б - ниобий, В - вольфрам, Г – марганец, Д- медь, К - кобальт, Н - никель, М - молибден, П - фосфор, Р - бор, С – кремний, Т - титан, Ф - ванадий, Х - хром, Ц " цирконий, Ю – алюминий, У - редкоземельный. Цифры после буквы (символа элемента) указывают примерное содержание соответствующего легирующего элемента в целых процентах, отсутствие цифры указывает, что оно составляет около 1 % и менее. Буква А в конце обозначения указывает, что сталь высококачественная (12ХИ3А), вначале - сталь автоматная (А15, А30), в середине - азот. У сталей, применяемых в литом виде, в конце марки ставится буква Л (например, 25Л, 35ГЛ).

Строительная сталь применяется для сварных конструкций, магистральных нефтегазопроводов, для армирования железобетонных конструкций и т.п. Для этих целей широко применяются низкоуглеродистые и низколегированные качественные стали, и стали обыкновенного качества (ВСтЗсп, ВСт3Гпс, ВСт5Гпс, 14Г2, 17ГС, 15ХСНД и др.).

Машиностроительная сталь общего назначения делится на три группы: стали, используемые без упрочняющей термической обработки; цементуемые низкоуглеродистые (до 0,25% С) и улучшаемые среднеуглеродистые (от 0,30-0,50% С) стали. Это, как правило, углеродистые и низколегированные стали.

Стали, используемые без упрочняющей термической обработки. Это стали, поставляемые в листах для последующей штамповки, глубокой вытяжки и т.п. По химическому составу стали низкоуглеродистые с пониженным содержанием кремния (кп, пс) и низколегированные (08кп, 08пс, 15кп, 20Хкп идр.).

Цементуемые стали применяются для изделий, подвергаемых поверхностному насыщению углеродом. После цементации, закалки и низкого отпуска детали из этих сталей имеют твердую поверхность (HRC 58-62), хорошо работающие на износ, и вязкую прочную сердцевину (HRC 20-30). Для мелких неответственных изделий широко применяют стали марок 10, 15, 20, 15Х, 20Х. Для более ответственных и крупных изделий применяют легированные качественные и высококачественные стали, например, 18ХГТ, 12ХН3А, 20Х2Н4А, 20ХГР, 18Х2Н4ВА и т.п.

Улучшаемые машиностроительные стали применяют после закалки и высокого отпуска (улучшения). Для изделий небольшого сечения или работающих при невысоких нагрузках используют стали марок 35, 40, 45, 50. Для деталей более крупного сечения применяют низко и среднелегированные стали, обладающие большой прокаливаемостью и обеспечивающие высокие механические свойства по всему сечению, например, 40Х, 30ХГТ, 50Г2 , 40ХН, 40ХНМА, ЗОХН2ВФ и др.

Инструментальные стали предназначены для изготовления режущего, мерительного, холодноштампового и горячештампового инструмента. Это, как правило, высокоуглеродистые стали, содержащие свыше 0,70% С (исключение составляют стали для горячештампового инструмента, которые относятся к среднеуглеродистым сталям). К ним относятся качественные и высококачественные стали, углеродистые, легированные и быстрорежущие. Они имеют соответствующую маркировку.

Углеродистые инструментальные стали обозначаются буквой У и цифрами, показывающими среднее содержание углерода в десятых долях процента (У7, У8, У10, У12А и т.п.).

Легированные инструментальные стали 9ХС, X, 5ХВГ, 3Х8В2 и т.д. маркируют цифрой, показывающей среднее содержание углерода в десятых долях процента, если его меньше 1,0 %. Если содержание углерода 1,0 % и выше, то цифра чаще всего отсутствует. Буквы означают легирующие элементы (см. выше), а следующие за ними цифры - содержание в целых процентах соответствующего легирующего элемента.

Быстрорежущие стали маркируют буквой Р (Р14Ф4). Следующая за ней цифра указывает содержание основного легирующего элемента (вольфрама) в целых процентах. Содержание углерода в быстрорежущих сталях 0,75-1,15 %, хрома - 3,8-4,2 % в обозначении марки стали не указываются. Кроме того, во всех быстрорежущих сталях присутствует ванадий; если его меньше 2,2 % , то в марке он не указывается.

Для режущего инструмента применяют углеродистые стали У8,У10, У8А,У12 ГОСТ 1435-90, легированные 9ХС, ХВГ, Х (ГОСТ 5950-73), а также быстрорежущие высоколегированные стали марок Р18, Р12, Р6МЗ, Р6М5, Р10К5 (ГОСТ 19265-73). Отличительная особенность инструментальных сталей для режущего инструмента - высокое содержание углерода (от 0,70 до 1,5 %), что позволяет получать после закалки и отпуска высокую твердость ИКС 60-65.

Для изготовления холодноштампового инструмента часто используют стали для режущего инструмента углеродистые и легированные. Это объясняется тем, что условия работы вырубных штампов и режущего инструмента очень близки. Лучшие стали для холодноштампового инструмента – X12Ф1, Х12М, Х6ВФ и т.п.

Стали для штампов, деформирующих металл в горячем состоянии должны иметь высокие механические свойства (прочность, вязкость) при повышенных температурах и обладать разгаростойкостъю, т.е. выдерживать многократные нагревы и охлаждения (термоциклы) без образования трещин. Это, как правило, низко- и среднелегированные стали, содержащие углерод от 0,35 до 0,60 %, такие как 5ХНМ, 5ХНМА, 4Х5В2ФС, ЗХ2В8Ф и др.

Стали для измерительного инструмента должны обладать высокой твердостью, износостойкостью и сохранять постоянство размеров. Для этой цели обычно применяют высокоуглеродистые низколегированные стали марок Х, 9ХС, ХВГ и др. Кроме того, для плоского инструмента (линейки, скобы, шаблоны и др.) часто используют низкоуглеродистые конструкционные стали 15, 15Х, 20Х и др., подвергаемые поверхностному насыщению углеродом с последующей закалкой.

Сталью именуется ковкий, деформируемый сплав железа, некоторого количества углерода (не более 2,14 %), а также незначительного количества других элементов. Именно этот материал широко применяется для изготовления самых разнообразных приборов, инструментов и строительных конструкций. Классификация и применение сталей зависят от многих факторов, которые необходимо разобрать подробнее. Изменяя химический состав этого материала за счет концентрации углерода и привнесения легирующих элементов, можно получать широкий диапазон сталей с абсолютно различными свойствами, что позволяет использовать этот материал во всех отраслях хозяйствования.

Сталь: классификация, применение, маркировка

Прежде всего стоит сказать, что сталь бывает углеродистая и легированная. Это зависит от того, были ли добавлены в сплав специальные легирующие элементы - алюминий, никель, хром, молибден, титан, бор, ванадий, марганец и другие. Все эти добавки применяются для повышения специфических свойств стали, а наилучший результат достигается комплексным легированием.

В общем случае стали классифицируют:

  • по назначению;
  • по качеству;
  • по способу производства;
  • по микроструктуре;
  • по химическому составу.

Химический состав

Как уже было сказано, классификация сталей в зависимости от химсостава разделяет этот материал на две большие группы:

  • легированные;
  • углеродистые.

В свою очередь, каждую из этих групп можно дополнительно разделить на несколько частей. Классификация легированных сталей подразумевает наличие таких видов:

  • низколегированные содержат незначительное количество (до 2,5 %) легирующих добавок;
  • среднелегированные - количество дополнительных элементов не превышает 10 %;
  • высоколегированные характеризуются наличием легирующих элементов в количестве более 10 %.

Можно также разделить и вторую группу. Классификация углеродистых сталей выглядит так:

  • высокоуглеродистые характеризуются содержанием углерода более 0,6 %;
  • среднеуглеродистые содержат от 0,25 до 0,6 % углерода;
  • малоуглеродистые — до 0,25 %.

Микроструктура

В нормализованном состоянии стали бывают:

  • перлитные - характеризуются низким содержанием элементов легирования и имеют после нормализации структуру: перлит, перлит + феррит, перлит + заэвтектоидный карбид;
  • мартенситные - имеют пониженную критическую скорость закалки и достаточно высокое содержание легирующих элементов;
  • аустенитные — повышенное содержание легирующих элементов, под влиянием которых достигается структура: аустенит, аустенит + карбид.

Классификация углеродистых сталей в отожженном состоянии:

  • доэвтектоидная применяется, например, для штампов горячего деформирования;
  • заэвтектоидная имеет структуру, состоящую из перлита и цементита, обычно используется для изготовления инструмента;
  • карбидная (ледебуритная) — например, быстрорежущая сталь ;
  • ферритная — нержавеющая, жароупорная, жаропрочная, высокохромистая стали.

Качество и способ производства

Безусловно, качество стали зависит от присутствия в ней вредных примесей в виде серы и фосфора. В зависимости от этого показателя классификация сталей выглядит так:

  • обычные — серы (S) до 0,06 %, фосфора (P) до 0,07 %;
  • качественные — серы до 0,04 %, а фосфора до 0,035 %;
  • высококачественные — те же показатели уменьшены до 0,025 %;
  • особовысококачественные — менее 0,015 % серы и до 0,025 % фосфора.

Способ изготовления стали предопределяет ее строение, состав и свойства. Так, рядовая сталь (обычная) чаще всего выплавляется в мартене или томасовских и бессемеровских конвертерах, после чего формируется в довольно крупные слитки. Такая сталь имеет повышенное количество неметаллических добавок. Высококачественные стали изготавливают более совершенными методами, например в электропечи, а особовысококачественные дополнительно очищаются от оксидов и сульфидов при помощи ЭШП — электрошлаковой переплавки. Такие стали изготавливаются исключительно легированными.

Раскисление

Также существует классификация сталей в зависимости от степени раскисления, то есть от того, какое количество кислорода было удалено в процессе изготовления. Исходя из этого параметра, стали бывают:

  • кипящие — мало раскисленные, насыщенные кислородом;
  • спокойные — совершенно раскисленные;
  • полуспокойные — стали, в которых кислород удален частично.

Для раскисления малоуглеродистых сталей применяют алюминий, марганец и кремний. Кипящую сталь обычно раскисляют при помощи ферромарганца в полуспокойную, кроме этого, добавляют небольшое количество ферросилиция, а спокойную, кроме предыдущих компонентов, обрабатывают алюминием и силикомарганцем.

Что означает маркировка стали?

Как ни странно, но классификация марок стали довольно разнообразна, и единой мировой системы не существует. В ряде стран, в том числе и в России, принята буквенно-численная маркировка.

Качественные углеродистые стали обозначаются двузначным числом, которое указывает на количественное содержание углерода (в сотых %). Углеродистые стали маркируются литерой "У" и числом, выражающим количество углерода (в десятых %) — У9, У12 и т. д.

Буквы используются также и для обозначения основного элемента легирования, например: "П" - фосфор, "А" — азот, "T" — титан, "Б" — ниобий, "Г" — марганец, "Ю" — алюминий, "Д" — медь, "M" — молибден, "P" — бор, "К" — кобальт, "В" — вольфрам, "E" — селен, "H" — никель, "С" — кремний, "X" — хром, "Ц" — цирконий. Цифра, стоящая за буквой, характеризует количество соответствующего элемента, а та, что находится в самом начале, указывает на содержание углерода (в сотых %). Если количество последнего превышает или равно 1 %, то первоначальная цифра может не указываться вовсе.

Литера "А", стоящая в конце марки, указывает на принадлежность ее к высококачественным. Та же буква, находящаяся в середине, сообщает, что сталь легирована азотом. Если же она стоит вначале, то это говорит о том, что перед вами автоматная сталь, обладающая повышенной обрабатываемостью. Особо высококачественная сталь маркируется буквой "Ш", добавленной в конце и написанной через дефис. Марки, не содержащие букв "А" или "Ш", являются качественными.

Также существуют определенные группы сталей, дополнительно маркирующиеся буквами:

  • "Е" - магнитные;
  • "Э" - электротехнические;
  • "Р" - быстрорежущие;
  • "Ш" - шарикоподшипниковые.

Конечно, существует еще достаточно тонкостей, однако можно сказать, что российская маркировка довольно проста и понятна, в то время как обозначения, принятые в других странах, гораздо сложнее.

Не менее интересна классификация сталей по назначению, поговорим о ней подробнее.

Конструкционные стали

  • Строительные — низколегированные, а также обычного качества, обладающие хорошей свариваемостью.
  • Для холодной штамповки — листовой прокат из низкоуглеродистых марок нормального качества.
  • Цементируемые — малоуглеродистые и некоторые легированные стали, применяемые для изготовления деталей, испытывающих динамические нагрузки и работающих с поверхностным износом.
  • Улучшаемые подвергаются термообработке (закалке и высокому отпуску). Это среднеуглеродистые, хромовые, хромоникелевые, хромоникельмолибденовые, хромокремниемарганцевые, хромистые стали с бором.
  • Высокопрочные — стали, у которых при помощи термообработки и особого состава достигнут двойной предел прочности по сравнению с обычными конструкционными аналогами.
  • Рессорно-пружинные могут длительное время сохранять упругость, достаточное сопротивление усталости и разрушению; к ним относят стали, легированные хромом, бором, кремнием, ванадием и марганцем.
  • Шарикоподшипниковые характеризуются высокой износоустойчивостью, прочностью и выносливостью, что достигается при помощи высокого (до 1 %) содержания углерода и включения хрома.
  • Автоматные применяются для производства массовых деталей, обрабатываемых при помощи станков-автоматов (болты, винты, шайбы, гайки и т. д.); для облегчения обработки в такие стали дополнительно вводится сера, свинец, теллур и селен, что приводит к получению ломкой короткой стружки и снижает трение.
  • Коррозионно-стойкие — высокохромистые стали с содержанием никеля; чем больше в них хрома, тем более выражена стойкость к коррозии, при этом содержание углерода должно быть минимальным.
  • Износостойкие используются в местах абразивного трения, ударов и высокого давления, например ковш экскаватора либо гусеницы трактора.

Инструментальные стали

Классификация сталей инструментального назначения также может быть представлена несколькими пунктами:

  • для режущих инструментов применяются углеродистые, легированные и быстрорежущие стали;
  • для измерительных инструментов материал должен, прежде всего, обладать постоянством размеров, шлифоваться, иметь достаточную твердость и износостойкость; для получения таких характеристик инструментальную сталь часто подвергают закалке и цементизации;
  • штамповые стали должны обладать достаточной износостойкостью, твердостью, теплостойкостью и прокаливаемостью; эту группу также можно дополнительно разделить на стали для холодной, горячей штамповки и валковые стали.

Стали с особенными химическими и физическими свойствами

Кроме всех вышеперечисленных, существуют также марки сталей с особыми свойствами:

  • электротехническая сталь — сплав железа и кремния, иногда легированный алюминием; применяется при производстве магнитопроводов разнообразного электротехнического оборудования;
  • суперинвар — сплав железа, никеля и кобальта, применяемый при изготовлении высокоточного оборудования;
  • жаростойкая — обладает повышенной стойкостью против разрушения при температурах от 900 °C, легируется алюминием, кремнием, никелем;
  • жаропрочная — применяется для изготовления деталей газотурбинных установок, такие стали призваны работать в нагруженном состоянии при высокой температуре в течение некоторого времени.